Skip to main content

A Targeted Q-PCR-Based Method for Point Mutation Testing by Analyzing Circulating DNA for Cancer Management Care

  • Protocol
  • First Online:
Clinical Applications of PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1392))

Abstract

Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex® and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex® has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex® test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex® is limited to the mutational status of known hotspot mutation; it is a “targeted approach.” However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandel P, Metais P (1948) C R Seances Soc Biol Fil 142(3–4):241–243

    CAS  PubMed  Google Scholar 

  2. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650

    CAS  PubMed  Google Scholar 

  3. Stroun M, Anker P, Lyautey J, Lederrey C, Maurice PA (1987) Isolation and characterization of DNA of cancer patients. Eur J Cancer Clin Oncol 23(6):707–712

    Article  CAS  PubMed  Google Scholar 

  4. Lo YMD, Chan KCA, Sun H, Chen EZ, Jiang PY, Lun FMF et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2(61):61ra91

    Article  CAS  PubMed  Google Scholar 

  5. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer – a survey. Biochim Biophys Acta 1775(1):181–232

    CAS  PubMed  Google Scholar 

  6. van der Vaart M, Pretorius PJ (2008) Characterization of circulating DNA in healthy human plasma. Clin Chim Acta 395(1–2):186

    Article  PubMed  Google Scholar 

  7. Jung K, Fleischhacker M, Rabien A (2010) Cell-free DNA in the blood as a solid tumor biomarker--a critical appraisal of the literature. Clin Chim Acta 411(21–22):1611–1624

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt B, Weickmann S, Witt C, Fleischhacker M (2008) Integrity of cell-free plasma DNA in patients with lung cancer and nonmalignant lung disease. Ann N Y Acad Sci 1137:207–213

    Article  CAS  PubMed  Google Scholar 

  9. Ellinger J, Wittkarnp V, Albers P, Perabo FGE, Mueller SC, von Ruecker A et al (2009) Cell-Free Circulating DNA: Diagnostic Value in Patients With Testicular Germ Cell Cancer. J Urol 181(1):363–371

    Article  CAS  PubMed  Google Scholar 

  10. Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M et al (2010) Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res 38(18):6159–6175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Mouliere F, Robert B, Peyrotte E, Del Rio M, Ychou M, Molina F et al (2011) High fragmentation characterizes tumour-derived circulating DNA. Plos One 6(9):e23418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schwarzenbach H, Hoon DSB, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437

    Article  CAS  PubMed  Google Scholar 

  13. Mouliere F, El Messaoudi S, Pang D, Dritschilo A, Thierry AR (2014) Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol 8(5):927–941

    Article  CAS  PubMed  Google Scholar 

  14. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209

    Article  CAS  PubMed  Google Scholar 

  16. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mouliere F, El Messaoudi S, Gongora C, Guedj AS, Robert B, Del Rio M et al (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol 6(3):319–328

    Article  PubMed Central  PubMed  Google Scholar 

  18. Thierry AR, Molina F (2011) Analytical methods for cell free nucleic acids and applications, PCT WO 2012/028747, Sept 5

    Google Scholar 

  19. El Messaoudi S, Rolet F, Mouliere F, Thierry AR (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230

    Article  PubMed  Google Scholar 

  20. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  21. Taly V, Pekin D, El Abed A et al (2012) Detecting biomarkers with microdroplet technology. Trends Mol Med 18(7):405–416

    Article  CAS  PubMed  Google Scholar 

  22. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20(4):430–435

    Article  CAS  PubMed  Google Scholar 

  24. Mouliere F, Thierry AR, Larroque C (2015) Detection of genetic alterations by nucleic acid analysis: use of PCR and Mass spectroscopy-based methods. In: Gahan P (ed) Circulating nucleic acids in early diagnosis, prognosis and treatment monitoring. Springer, Dordrecht

    Google Scholar 

  25. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.R. Thierry is supported by the INSERM, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain R. Thierry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thierry, A.R. (2016). A Targeted Q-PCR-Based Method for Point Mutation Testing by Analyzing Circulating DNA for Cancer Management Care. In: Luthra, R., Singh, R., Patel, K. (eds) Clinical Applications of PCR. Methods in Molecular Biology, vol 1392. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3360-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3360-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3358-7

  • Online ISBN: 978-1-4939-3360-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics