Skip to main content

The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment: Translational Studies and Basic Protocols for Extraction and PCR Analysis

  • Protocol
  • First Online:
Cancer Drug Resistance

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer death and has the worst prognosis of any major malignancy, with less than 5 % of patients alive 5-years after diagnosis. The therapeutic options for metastatic PDAC have changed in the past few years from single agent gemcitabine treatment to combination regimens. Nowadays, FOLFIRINOX or gemcitabine with nab-paclitaxel are new standard combinations in frontline metastatic setting in PDAC patients with good performance status. MicroRNAs (miRNA) are small, noncoding RNA molecules affecting important cellular processes such as inhibition of apoptosis, cell proliferation, epithelial-to-mesenchymal transition (EMT), metastases, and resistance to common cytotoxic and anti-signaling therapy in PDAC. A functional association between miRNAs and chemoresistance has been described for several common therapies. Therefore, in this review, we summarize the current knowledge on the role of miRNAs in the resistance to current anticancer treatment used for patients affected by metastatic PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pennisi E (2012) Genomics ENCODE project writes eulogy for junk DNA. Science 337(1159):1161

    Google Scholar 

  2. Consortium E. P (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  3. Khan S, Ansarullah, Kumar D, Jaggi M, Chauhan SC (2013) Targeting microRNAs in pancreatic cancer: microplayers in the big game. Cancer Res 73:6541–6547

    Article  PubMed  Google Scholar 

  4. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang YT, Xu XH, Yang XD, Hao J, Cao H, Zhu W, Zhang SY, Cao JP (2014) Role of non-coding RNAs in pancreatic cancer: the bane of the microworld. World J Gastroenterol 20:9405–9417

    PubMed  PubMed Central  Google Scholar 

  6. Martin R, Hackert P, Ruprecht M, Simm S, Bruning L, Mirus O, Sloan KE, Kudla G, Schleiff E, Bohnsack MT (2014) A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. RNA 20:1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Claycomb JM (2014) Ancient endo-siRNA pathways reveal new tricks. Curr Biol 24:R703–R715

    Article  CAS  PubMed  Google Scholar 

  8. Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. RNA 15:1233–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest AR, Grimmond SM, Schroder K, Irvine K, Arakawa T, Nakamura M, Kubosaki A, Hayashida K, Kawazu C, Murata M, Nishiyori H, Fukuda S, Kawai J, Daub CO, Hume DA, Suzuki H, Orlando V, Carninci P, Hayashizaki Y, Mattick JS (2009) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41:572–578

    Article  CAS  PubMed  Google Scholar 

  10. Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P, Stadler PF (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25:2298–2301

    Article  CAS  PubMed  Google Scholar 

  11. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khorkova O, Myers AJ, Hsiao J, Wahlestedt C (2014) Natural antisense transcripts. Hum Mol Genet 23:R54–R63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  16. Calin G, Dumitru C, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhardwaj A, Singh S, Singh AP (2010) MicroRNA-based cancer therapeutics: big hope from small RNAs. Mol Cell Pharmacol 2:213–219

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wojcik SE, Rossi S, Shimizu M, Nicoloso MS, Cimmino A, Alder H, Herlea V, Rassenti LZ, Rai KR, Kipps TJ, Keating MJ, Croce CM, Calin GA (2010) Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis 31:208–215

    Article  CAS  PubMed  Google Scholar 

  19. Fabbri M (2008) MicroRNAs and cancer epigenetics. Curr Opin Investig Drugs 9:583–590

    CAS  PubMed  Google Scholar 

  20. McCarroll JA, Naim S, Sharbeen G, Russia N, Lee J, Kavallaris M, Goldstein D, Phillips PA (2014) Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Front Physiol 5:141 doi 10.3389/fphys 2014.00141

    Google Scholar 

  21. Arora S, Bhardwaj A, Singh S, Srivastava SK, McClellan S, Nirodi CS, Piazza GA, Grizzle WE, Owen LB, Singh AP (2013) An undesired effect of chemotherapy: gemcitabine promotes pancreatic cancer cell invasiveness through reactive oxygen species-dependent, nuclear factor kappaB- and hypoxia-inducible factor 1alpha-mediated up-regulation of CXCR4. J Biol Chem 288:21197–21207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaur S, Kumar S, Momi N, Sasson AR, Batra SK (2013) Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 10:607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garajova I, Le Large TY, Frampton AE, Rolfo C, Voortman J, Giovannetti E (2014) Molecular mechanisms underlying the role of MicroRNAs in the chemoresistance of pancreatic cancer. BioMed Res Int 2014:678401

    PubMed  PubMed Central  Google Scholar 

  24. Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049

    Article  CAS  PubMed  Google Scholar 

  25. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C, Bennouna J, Bachet JB, Khemissa-Akouz F, Pere-Verge D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825

    Article  CAS  PubMed  Google Scholar 

  26. Von Hoff DD, Ervin TJ, Arena FP, Chiorean EG, Infante JR, Moore MJ, Seay TE, Tjulandin S, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias JL, Renschler MF (2013) Increased survival in pancreatic cancer with weekly nab-paclitaxel plus gemcitabine. N Eng J Med 369: 1691-703

    Google Scholar 

  27. Sultana A, Smith CT, Cunningham D, Starling N, Neoptolemos JP, Ghaneh P (2007) Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer. J Clin Oncol 25:2607–2615

    Article  PubMed  Google Scholar 

  28. Matthaios D, Zarogoulidis P, Balgouranidou I, Chatzaki E, Kakolyris S (2011) Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology 81:259–272

    Article  CAS  PubMed  Google Scholar 

  29. Van Moorsel CJ, Smid K, Voorn DA, Bergman AM, Pinedo HM, Peters GJ (2003) Effect of gemcitabine and cis-platinum combinations on ribonucleotide and deoxyribonucleotide pools in ovarian cancer cell lines. Int J Oncol 22:201–207

    PubMed  Google Scholar 

  30. Peters GJ, Van Moorsel CJ, Lakerveld B, Smid K, Noordhuis P, Comijn EC, Weaver D, Willey JC, Voorn D, Van der Vijgh WJ, Pinedo HM (2006) Effects of gemcitabine on cis-platinum-DNA adduct formation and repair in a panel of gemcitabine and cisplatin-sensitive or -resistant human ovarian cancer cell lines. Int J Oncol 28:237–244

    CAS  PubMed  Google Scholar 

  31. Giovannetti E, Funel N, Peters GJ, Del Chiaro M, Erozenci LA, Vasile E, Leon LG, Pollina LE, Groen A, Falcone A, Danesi R, Campani D, Verheul HM, Boggi U (2010) MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 70:4528–4538

    Article  CAS  PubMed  Google Scholar 

  32. Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, Kim YT, Funel N, Park JK, Kim MA, Kang GH, Kim SW, Del Chiaro M, Peters GJ, Giaccone G (2010) Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5, e10630

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR, Sansom OJ, Evans TR, McKay CJ, Oien KA (2012) MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res 18:534–545

    Article  CAS  PubMed  Google Scholar 

  34. Caponi S, Funel N, Frampton AE, Mosca F, Santarpia L, Van der Velde AG, Jiao LR, De Lio N, Falcone A, Kazemier G, Meijer GA, Verheul HM, Vasile E, Peters GJ, Boggi U, Giovannetti E (2013) The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol 24:734–741

    Article  CAS  PubMed  Google Scholar 

  35. Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T, Takahata S, Toma H, Nagai E, Tanaka M (2009) MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 8:1067–1074

    Article  CAS  PubMed  Google Scholar 

  36. Park JK, Lee EJ, Esau C, Schmittgen TD (2009) Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38:e190–e199

    Article  CAS  PubMed  Google Scholar 

  37. Dong J, Zhao YP, Zhou L, Zhang TP, Chen G (2011) Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch Med Res 42:8–14

    Article  CAS  PubMed  Google Scholar 

  38. Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel N, Gall TM, De Giorgio A, Pinho FG, Fulci V, Britton DJ, Ahmad R, Habib NA, Coombes RC, Harding V, Knosel T, Stebbing J, Jiao LR (2014) MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146(268–277), e218

    Google Scholar 

  39. Preis M, Gardner TB, Gordon SR, Pipas JM, Mackenzie TA, Klein EE, Longnecker DS, Gutmann EJ, Sempere LF, Korc M (2011) MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin Cancer Res 17:5812–5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Greither T, Grochola LF, Udelnow A, Lautenschlager C, Wurl P, Taubert H (2010) Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer 126:73–80

    Article  CAS  PubMed  Google Scholar 

  41. Xia QS, Ishigaki Y, Zhao X, Shimasaki T, Nakajima H, Nakagawa H, Takegami T, Chen ZH, Motoo Y (2011) Human SMG-1 is involved in gemcitabine-induced primary microRNA-155/BIC up-regulation in human pancreatic cancer PANC-1 cells. Pancreas 40:55–60

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by Natural Agents Leads to the Reversal of Epithelial-to-Mesenchymal Transition in Gemcitabine-Resistant Pancreatic Cancer Cells. Cancer Res 69:6704–6712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wellner U, Schubert J, Burk U, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, Zur H (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

    Article  CAS  PubMed  Google Scholar 

  44. Papaconstantinou IG, Manta A, Gazouli M, Lyberopoulou A, Lykoudis PM, Polymeneas G, Voros D (2013) Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas 42:67–71

    Article  CAS  PubMed  Google Scholar 

  45. Ohuchida K, Mizumoto K, Lin C, Yamaguchi H, Ohtsuka T, Sato N, Toma H, Nakamura M, Nagai E, Hashizume M, Tanaka M (2012) MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol 19:2394–2402

    Article  PubMed  Google Scholar 

  46. Setoyama T, Zhang X, Natsugoe S, Calin GA (2011) microRNA-10b: a new marker or the marker of pancreatic ductal adenocarcinoma? Clin Cancer Res 17:5527–5529

    Article  CAS  PubMed  Google Scholar 

  47. Zhang XJ, Ye H, Zeng CW, He B, Zhang H, Chen YQ (2010) Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol 3:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iwagami Y, Eguchi H, Nagano H, Akita H, Hama N, Wada H, Kawamoto K, Kobayashi S, Tomokuni A, Tomimaru Y, Mori M, Doki Y (2013) miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br J Cancer 109:502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, Hama N, Kawamoto K, Kobayashi S, Nishida N, Koseki J, Nishimura T, Gotoh N, Ohno S, Yabuta N, Nojima H, Mori M, Doki Y, Ishii H (2014) MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br J Cancer 111:1572–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Funamizu N, Lacy CR, Parpart ST, Takai A, Hiyoshi Y, Yanaga K (2014) MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int J Oncol 44:725–734

    CAS  PubMed  Google Scholar 

  52. Hamada S, Masamune A, Miura S, Satoh K, Shimosegawa T (2014) MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal 26:179–185

    Article  CAS  PubMed  Google Scholar 

  53. Takiuchi D, Eguchi H, Nagano H, Iwagami Y, Tomimaru Y, Wada H, Kawamoto K, Kobayashi S, Marubashi S, Tanemura M, Mori M, Doki Y (2013) Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 13:517–523

    Article  CAS  PubMed  Google Scholar 

  54. Hodzic J, Giovannetti E, Diosdado B, Adema AD, Peters GJ (2011) Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells. Nucleosides Nucleotides Nucleic Acids 30:1214–1222

    Article  CAS  PubMed  Google Scholar 

  55. Bera A, VenkataSubbaRao K, Manoharan MS, Hill P, Freeman JW (2014) A miRNA signature of chemoresistant mesenchymal phenotype identifies novel molecular targets associated with advanced pancreatic cancer. PLoS One 9, e106343

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ohuchida K, Mizumoto K, Kayashima T, Fujita H, Moriyama T, Ohtsuka T, Ueda J, Nagai E, Hashizume M, Tanaka M (2011) MicroRNA expression as a predictive marker for gemcitabine response after surgical resection of pancreatic cancer. Ann Surg Oncol 18:2381–2387

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yu J, Ohuchida K, Mizumoto K, Sato N, Kayashima T, Fujita H, Nakata K, Tanaka M (2010) MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer 9:169

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nagano H, Tomimaru Y, Eguchi H, Hama N, Wada H, Kawamoto K, Kobayashi S, Mori M, Doki Y (2013) MicroRNA-29a induces resistance to gemcitabine through the Wnt/beta-catenin signaling pathway in pancreatic cancer cells. Int J Oncol 43:1066–1072

    CAS  PubMed  Google Scholar 

  60. Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI, Tuveson DA (2012) nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, Munoz M, Quijano Y, Cubillo A, Rodriguez-Pascual J, Plaza C, de Vicente E, Prados S, Tabernero S, Barbacid M, Lopez-Rios F, Hidalgo M (2013) Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 109:926–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, Lolkema MP, Buchholz M, Olive KP, Gress TM, Tuveson DA (2011) Stromal biology and therapy in pancreatic cancer. Gut 60:861–868

    Article  PubMed  Google Scholar 

  63. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK (2009) MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 8:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, Fang Y, Lin X, Xu Y, Xu W, Shen H, Wen J (2014) miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer 135:1286–1296

    Article  CAS  PubMed  Google Scholar 

  65. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P (2008) Potential of spice-derived phytochemicals for cancer prevention. Planta Med 74:1560–1569

    Article  CAS  PubMed  Google Scholar 

  66. Donahue TR, Nguyen AH, Moughan J, Li L, Tatishchev S, Toste P, Farrell JJ (2014) Stromal MicroRNA-21 levels predict response to 5-fluorouracil in patients with pancreatic cancer. J Surg Oncol 110(8):952–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou Y, Wan G, Spizzo R, Ivan C, Mathur R, Hu X, Ye X, Lu J, Fan F, Xia L, Calin GA, Ellis LM, Lu X (2014) miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Mol Oncol 8:83–92

    Article  CAS  PubMed  Google Scholar 

  68. Kjersem JB, Ikdahl T, Lingjaerde OC, Guren T, Tveit KM, Kure EH (2014) Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol Oncol 8:59–67

    Article  CAS  PubMed  Google Scholar 

  69. Schou JV, Rossi S, Jensen BV, Nielsen DL, Pfeiffer P, Hogdall E, Yilmaz M, Tejpar S, Delorenzi M, Kruhoffer M, Johansen JS (2014) MiR-345 in metastatic colorectal cancer: a non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan. PLoS One 9, e99886

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chakraborty C, George Priya Doss C, Bandyopadhyay S (2013) miRNAs in insulin resistance and diabetes-associated pancreatic cancer: the ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets 14:1110–1117

    Article  CAS  PubMed  Google Scholar 

  71. Wang YS, Wang YH, Xia HP, Zhou SW, Schmid-Bindert G, Zhou CC (2012) MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev 13:255–260

    Article  PubMed  Google Scholar 

  72. Yan G, Yao R, Tang D, Qiu T, Shen Y, Jiao W, Ge N, Xuan Y, Wang Y (2014) Prognostic significance of microRNA expression in completely resected lung adenocarcinoma and the associated response to erlotinib. Med Oncol 31:203

    Article  PubMed  Google Scholar 

  73. Bryant JL, Britson J, Balko JM, Willian M, Timmons R, Frolov A, Black EP (2012) A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br J Cancer 106:148–156

    Article  CAS  PubMed  Google Scholar 

  74. Chatterjee A, Chattopadhyay D, Chakrabarti G (2014) MiR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One 9, e95716

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M (2010) MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther 10:748–757

    Article  CAS  PubMed  Google Scholar 

  76. Boni V, Zarate R, Villa JC, Bandres E, Gomez MA, Maiello E, Garcia-Foncillas J, Aranda E (2011) Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharmacogenomics J 11:429–436

    Article  CAS  PubMed  Google Scholar 

  77. Gutierrez ME, Kummar S, Giaccone G (2009) Next generation oncology drug development: opportunities and challenges. Nat Rev Clin Oncol 6:259–265

    Article  CAS  PubMed  Google Scholar 

  78. Philip PA, Benedetti J, Corless CL, Wong R, O'Reilly EM, Flynn PJ, Rowland KM, Atkins JN, Mirtsching BC, Rivkin SE, Khorana AA, Goldman B, Fenoglio-Preiser CM, Abbruzzese JL, Blanke CD (2010) Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol 28:3605–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fensterer H, Schade-Brittinger C, Muller HH, Tebbe S, Fass J, Lindig U, Settmacher U, Schmidt WE, Marten A, Ebert MP, Kornmann M, Hofheinz R, Endlicher E, Brendel C, Barth PJ, Bartsch DK, Michl P, Gress TM (2013) Multicenter phase II trial to investigate safety and efficacy of gemcitabine combined with cetuximab as adjuvant therapy in pancreatic cancer (ATIP). Ann Oncol 24:2576–2581

    Article  CAS  PubMed  Google Scholar 

  80. Arslan C, Yalcin S (2014) Current and future systemic treatment options in metastatic pancreatic cancer. J Gastrointest Oncol 5:280–295

    PubMed  PubMed Central  Google Scholar 

  81. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    Article  CAS  PubMed  Google Scholar 

  82. Jimeno A, Tan AC, Coffa J, Rajeshkumar NV, Kulesza P, Rubio-Viqueira B, Wheelhouse J, Diosdado B, Messersmith WA, Iacobuzio-Donahue C, Maitra A, Varella-Garcia M, Hirsch FR, Meijer GA, Hidalgo M (2008) Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res 68:2841–2849

    Article  CAS  PubMed  Google Scholar 

  83. Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR, Lin SC, Chang YC, Lin SY, Chen SJ, Chen HC, Yeh SD, Wu CW (2010) EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 70:8822–8831

    Article  CAS  PubMed  Google Scholar 

  84. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741

    Article  CAS  PubMed  Google Scholar 

  85. Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, Dominguez-Bendala J, Pastori RL (2008) Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 366:922–926

    Article  CAS  PubMed  Google Scholar 

  86. Izumchenko E, Chang X, Michailidi C, Kagohara L, Ravi R, Paz K, Brait M, Hoque M, Ling S, Bedi A, Sidransky D (2014) The TGFbeta-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res 74:3995–4005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, Jung K (2010) Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem 56:998–1006

    Article  CAS  PubMed  Google Scholar 

  89. Verhoeven CJ, Farid WR, de Ruiter PE, Hansen BE, Roest HP, de Jonge J, Kwekkeboom J, Metselaar HJ, Tilanus HW, Kazemier G, van der Laan LJ (2013) MicroRNA profiles in graft preservation solution are predictive of ischemic-type biliary lesions after liver transplantation. J Hepatol 59:1231–1238

    Article  CAS  PubMed  Google Scholar 

  90. Yu DC, Li QG, Ding XW, Ding YT (2011) Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci 12:2055–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Verweij FJ, van Eijndhoven MA, Middeldorp J, Pegtel DM (2013) Analysis of viral microRNA exchange via exosomes in vitro and in vivo. Methods Mol Biol 1024:53–68

    Article  CAS  PubMed  Google Scholar 

  92. Li L, Masica D, Ishida M, Tomuleasa C, Umegaki S, Kalloo AN, Georgiades C, Singh VK, Khashab M, Amateau S, Li Z, Okolo P, Lennon AM, Saxena P, Geschwind JF, Schlachter T, Hong K, Pawlik TM, Canto M, Law J, Sharaiha R, Weiss CR, Thuluvath P, Goggins M, Shin EJ, Peng H, Kumbhari V, Hutfless S, Zhou L, Mezey E, Meltzer SJ, Karchin R, Selaru FM (2014) Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology 60:896–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mlcochova H, Hezova R, Stanik M, Slaby O (2014) Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol Oncol 32(41):e41–e49

    Google Scholar 

  95. Cirera S, Busk PK (2014) Quantification of miRNAs by a simple and specific qPCR method. Methods Mol Biol 1182:73–81

    Article  PubMed  Google Scholar 

  96. Ach RA, Wang H, Curry B (2008) Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol 8:69

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D'Andrade P, DeMayo M, Dennis L, Derveaux S, Feng Y, Fulmer-Smentek S, Gerstmayer B, Gouffon J, Grimley C, Lader E, Lee KY, Luo S, Mouritzen P, Narayanan A, Patel S, Peiffer S, Ruberg S, Schroth G, Schuster D, Shaffer JM, Shelton EJ, Silveria S, Ulmanella U, Veeramachaneni V, Staedtler F, Peters T, Guettouche T, Wong L, Vandesompele J (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11:809–815

    Article  CAS  PubMed  Google Scholar 

  98. Meyer SU, Kaiser S, Wagner C, Thirion C, Pfaffl MW (2012) Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs--a comparative study. PLoS One 7, e38946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64

    Article  PubMed  PubMed Central  Google Scholar 

  100. Noordhuis P, Holwerda U, Van der Wilt CL, Van Groeningen CJ, Smid K, Meijer S, Pinedo HM, Peters GJ (2004) 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann Oncol 15:1025–1032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Bennink Foundation, the CCA foundation and AIRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godefridus J. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Garajová, I., Le Large, T.Y.S., Giovannetti, E., Kazemier, G., Biasco, G., Peters, G.J. (2016). The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment: Translational Studies and Basic Protocols for Extraction and PCR Analysis. In: Rueff, J., Rodrigues, A. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 1395. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3347-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3347-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3345-7

  • Online ISBN: 978-1-4939-3347-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics