Skip to main content

Molecular Biology of the Stress Response in the Early Embryo and its Stem Cells

  • Chapter
  • First Online:
Cell Signaling During Mammalian Early Embryo Development

Abstract

Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a ‘runting model’ where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a tendency to prioritize differentiation by increasing the first essential lineage and decreasing later lineages. These mechanisms include stress enzymes that regulate TFs and provide stress-specific, shared homeostatic cellular and organismal responses of prioritized differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Acronyms and abbreviations used

References

  • Abdallah M, Xie Y, Puscheck EE, Rappolee DA, Awonuga AO. Benzopyrene activates SAPK and induces HAND1 that favors differentiation of trophoblast stem cells. Fertil Steril 2009;92(3):S136–7.

    Article  Google Scholar 

  • Abecia JA, Forcada F, Palacin I, Sanchez-Prieto L, Sosa C, Fernandez-Foren A, Meikle A. Undernutrition affects embryo quality of superovulated ewes. Zygote. 2013;91(10):4832–40

    Google Scholar 

  • Abell AN, Granger DA, Johnson NL, Vincent-Jordan N, Dibble CF, Johnson GL. Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol. 2009;29:2748–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abraham T, Pin CL, Watson AJ. Embryo collection induces transient activation of XBP1 arm of the ER stress response while embryo vitrification does not. Mol Hum Reprod. 2011;18(5):229–42

    Google Scholar 

  • Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell. 2013;52:380–92.

    Article  CAS  PubMed  Google Scholar 

  • Adelman DM, Gertsenstein M, Nagy A, Simon MC, Maltepe E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev 2000;14:3191–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ain R, Dai G, Dunmore JH, Godwin AR, Soares MJ. A prolactin family paralog regulates reproductive adaptations to a physiological stressor. Proc Natl Acad Sci U S A. 2004;101:16543–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008;33:141–50.

    Article  CAS  PubMed  Google Scholar 

  • Armant DR. Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol. 2005;280:260–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on Sox2 function. Genes Dev. 2003;17:126–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Awonuga AO, Zhong W, Abdallah ME, Slater JA, Zhou SC, Xie YF, Puscheck EE, Rappolee DA. Eomesodermin, HAND1, and CSH1 proteins are induced by cellular stress in a stress-activated protein kinase-dependent manner. Mol Reprod Dev. 2011;78:519–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Awonuga AO, Yang Y, Rappolee DA. When stresses collide. Biol Reprod. 2013;89:74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4:585–95.

    Article  CAS  PubMed  Google Scholar 

  • Barcroft LC, Offenberg H, Thomsen P, Watson AJ. Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev Biol. 2003;256:342–54.

    Article  CAS  PubMed  Google Scholar 

  • Batten BE, Albertini DF, Ducibella T. Patterns of organelle distribution in mouse embryos during preimplantation development. Am J Anat. 1987;178:204–13.

    Article  CAS  PubMed  Google Scholar 

  • Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: Molecular characteristics favoring viability. Mol Reprod Dev. 2007;74:1345–53.

    Article  CAS  PubMed  Google Scholar 

  • Bell CE, Lariviere NM, Watson PH, Watson AJ. Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis. Hum Reprod. 2009;24:1373–86.

    Article  CAS  PubMed  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53.

    Article  CAS  PubMed  Google Scholar 

  • Brison DR, Leese HJ. Energy metabolism in late preimplantation rat embryos. J Reprod Fertil. 1991;93:245–51.

    Article  CAS  PubMed  Google Scholar 

  • Brison DR, Leese HJ. The role of exogenous energy substrates in blastocoele fluid accumulation in the rat. Zygote. 1994;2:69–77.

    Article  CAS  PubMed  Google Scholar 

  • Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod. 1997;56:1088–96.

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ. Oxygen, the Janus gas; its effects on human placental development and function. J Anat. 2009;215:27–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton PJ, Waddell BJ. Dual function of 11beta-hydroxysteroid dehydrogenase in placenta: modulating placental glucocorticoid passage and local steroid action. Biol Reprod. 1999;60:234–40.

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87:2954–9.

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol. 2010;54:303–12.

    Article  CAS  PubMed  Google Scholar 

  • Butcher L, Coates A, Martin KL, Rutherford AJ, Leese HJ. Metabolism of pyruvate by the early human embryo. Biol Reprod. 1998;58:1054–6.

    Article  CAS  PubMed  Google Scholar 

  • Carling D. The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci. 2004;29:18–24.

    Article  CAS  PubMed  Google Scholar 

  • Cikos S, Vesela J, Ilʼkova G, Rehak P, Czikkova S, Koppel J. Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol Reprod Dev. 2005;71:145–53.

    Article  CAS  PubMed  Google Scholar 

  • Cikos S, Rehak P, Czikkova S, Vesela J, Koppel J. Expression of adrenergic receptors in mouse preimplantation embryos and ovulated oocytes. Reproduction. 2007;133:1139–47.

    Article  CAS  PubMed  Google Scholar 

  • Chae HD, Lee MR, Broxmeyer HE. 5-Aminoimidazole-4-carboxyamide ribonucleoside induces G(1)/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation. Stem Cells. 2012;30:140–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chai N, Patel Y, Jacobson K, McMahon J, McMahon A, Rappolee DA. FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Dev Biol. 1998;198:105–15.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain SJ, Yee D, Magnuson T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells. 2008;26:1496–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandler KJ, Barrier M, Jeffay S, Nichols HP, Kleinstreuer NC, Singh AV, Reif DM, Sipes NS, Judson RS, Dix DJ, Kavlock R, Hunter ES, 3rd, et al. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay. PLoS One. 2011;6:e18540.

    Google Scholar 

  • Chandrakanthan V, Li A, Chami O, OʼNeill C. Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos. Reprod Biol Endocrinol. 2006;4:61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997;386:84–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Hudson E, Chi MM, Chang AS, Moley KH, Hardie DG, Downs SM. AMPK regulation of mouse oocyte meiotic resumption in vitro. Dev Biol. 2006;291:227–38.

    Article  CAS  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452:181–6.

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl. 1):S60–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coan PM, Ferguson-Smith AC, Burton GJ. Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J Anat. 2005;207:783–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corson LB, Yamanaka Y, Lai KM, Rossant J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development. 2003;130:4527–37.

    Article  CAS  PubMed  Google Scholar 

  • Cowden Dahl KD Fryer BH Mack FA Compernolle V Maltepe E Adelman DM Carmeliet P Simon MC. Hypoxia-inducible factors 1alpha and 2alpha regulate trophoblast differentiation. Mol Cell Biol. 2005;25:10479–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dawson KM, Collins JL, Baltz JM. Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol Reprod. 1998;59:225–32.

    Article  CAS  PubMed  Google Scholar 

  • de Nadal E Ammerer G Posas F. Controlling gene expression in response to stress. Nat Rev Genet. 2011;12:833–45.

    PubMed  Google Scholar 

  • Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62:1526–35.

    Article  CAS  PubMed  Google Scholar 

  • Donnay I, Leese HJ. Embryo metabolism during the expansion of the bovine blastocyst. Mol Reprod Dev. 1999;53:171–8.

    Article  CAS  PubMed  Google Scholar 

  • Drake AJ, McPherson RC, Godfrey KM, Cooper C, Lillycrop KA, Hanson MA, Meehan RR, Seckl JR, Reynolds RM. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol (Oxf). 2012;77:808–15.

    Article  CAS  Google Scholar 

  • Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A. Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One. 2011;6:e19300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eng GS, Sheridan RA, Wyman A, Chi MM, Bibee KP, Jungheim ES, Moley KH. AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations. Diabetes. 2007;56:2228–34.

    Article  CAS  PubMed  Google Scholar 

  • Entringer S, Buss C, Andersen J, Chicz-DeMet A, Wadhwa PD. Ecological momentary assessment of maternal cortisol profiles over a multiple-day period predicts the length of human gestation. Psychosom Med. 2011;73:469–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Entringer S, Buss C, Wadhwa PD. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci Signal. 2012;5:pt12.

    Article  PubMed  CAS  Google Scholar 

  • Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH, Simhan HN, Wadhwa PD. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstet Gynecol. 2013;208:134 e131–7.

    Google Scholar 

  • Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod. 1994;50:1027–33.

    Article  CAS  PubMed  Google Scholar 

  • Farny NG, Kedersha NL, Silver PA. Metazoan stress granule assembly is mediated by P-eIF2alpha-dependent and -independent mechanisms. RNA. 2009;15:1814–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feil D, Lane M, Roberts CT, Kelley RL, Edwards LJ, Thompson JG, Kind KL. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol. 2006;572:87–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferdous A, Morris J, Abedin MJ, Collins S, Richardson JA, Hill JA. Forkhead factor FoxO1 is essential for placental morphogenesis in the developing embryo. Proc Natl Acad Sci U S A. 2011;108:16307–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandes R, Tsuda C, Perumalsamy AL, Naranian T, Chong J, Acton BM, Tong ZB, Nelson LM, Jurisicova A. NLRP5 mediates mitochondrial function in mouse oocytes and embryos. Biol Reprod. 2012;86:138, 131–10.

    Google Scholar 

  • Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–9.

    Article  CAS  PubMed  Google Scholar 

  • Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Mitochondria in control of cell fate. Circ Res. 2012;110:526–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fong B, Watson PH, Watson AJ. Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation. BMC Dev Biol. 2007;7:2.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P, Bardot O, Chazaud C. Primitive Endoderm differentiates via a three-step mechanism involving nanog and RTK signaling. Dev Cell 2011;21:1005–13.

    Article  CAS  PubMed  Google Scholar 

  • Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology. 1998;49:83–102.

    Article  CAS  PubMed  Google Scholar 

  • Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science. 1997;277:1669–72.

    Article  CAS  PubMed  Google Scholar 

  • Gerbe F, Cox B, Rossant J, Chazaud C. Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev Biol. 2008;313:594–602.

    Article  CAS  PubMed  Google Scholar 

  • Giroux S, Tremblay M, Bernard D, Cardin-Girard JF, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, Charron J. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol. 1999;9:369–72.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez RR, Simon C, Caballero-Campo P, Norman R, Chardonnens D, Devoto L, Bischof P. Leptin and reproduction. Hum Reprod Update. 2000a;6:290–300.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez RR, Caballero-Campo P, Jasper M, Mercader A, Devoto L, Pellicer A, Simon C. Leptin and leptin receptor are expressed in the human endometrium and endometrial leptin secretion is regulated by the human blastocyst. J Clin Endocrinol Metab. 2000b;85:4883–8.

    CAS  PubMed  Google Scholar 

  • Gosden R, Trasler J, Lucifero D, Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361:1975–7.

    Article  PubMed  Google Scholar 

  • Hamatani T, Carter MG, Sharov AA, Ko MS. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell. 2004;6:117–31.

    Article  CAS  PubMed  Google Scholar 

  • Hammer MA, Baltz JM. Betaine is a highly effective organic osmolyte but does not appear to be transported by established organic osmolyte transporters in mouse embryos. Mol Reprod Dev. 2002;62:195–202.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D. Signaling vascular morphogenesis and maintenance. Science. 1997;277:48–50.

    Article  CAS  PubMed  Google Scholar 

  • Hansen PJ, Drost M, Rivera RM, Paula-Lopes FF, al-Katanani YM, Krininger CE, 3rd, Chase CC, Jr. Adverse impact of heat stress on embryo production: causes and strategies for mitigation. Theriogenology. 2001;55:91–103.

    Google Scholar 

  • Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003;144:5179–83.

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Scheuner D, Chen JJ, Kaufman RJ, Ron D. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci U S A. 2009;106:1832–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Y, Hakvoort TB, Vermeulen JL, Lamers WH, Van Roon MA. Glutamine synthetase is essential in early mouse embryogenesis. Dev Dyn. 2007;236:1865–75.

    Article  CAS  PubMed  Google Scholar 

  • Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25:613–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2009;2:ra73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev. 1996;44:476–85.

    Article  CAS  PubMed  Google Scholar 

  • Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension. 2008;51:970–5.

    Article  CAS  PubMed  Google Scholar 

  • Hur YS, Park JH, Ryu EK, Park SJ, Lee JH, Lee SH, Yoon J, Yoon SH, Hur CY, Lee WD, Lim JH. Effect of micro-vibration culture system on embryo development. J Assist Reprod Genet. 2013;30:835–41.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, Herbert M, Murdoch A, Strachan T, Lako M. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells. 2005;23:1035–43.

    Article  CAS  PubMed  Google Scholar 

  • Iwawaki T, Akai R, Yamanaka S, Kohno K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci U S A. 2009;106:16657–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin XL, Chandrakanthan V, Morgan HD, O’Neill C. Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol Reprod. 2009;81:234–42.

    Article  CAS  PubMed  Google Scholar 

  • Kaijser M, Bonamy AK, Akre O, Cnattingius S, Granath F, Norman M, Ekbom A. Perinatal risk factors for diabetes in later life. Diabetes. 2009;58:523–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang J, Shakya A, Tantin D. Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends Biochem Sci. 2009a;34:491–9.

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Gemberling M, Nakamura M, Whitby FG, Handa H, Fairbrother WG, Tantin D. A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev. 2009b;23:208–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsanou V, Milatos S, Yiakouvaki A, Sgantzis N, Kotsoni A, Alexiou M, Harokopos V, Aidinis V, Hemberger M, Kontoyiannis DL. The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol Cell Biol. 2009;29:2762–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamura K, Sato N, Fukuda J, Kodama H, Kumagai J, Tanikawa H, Murata M, Tanaka T. The role of leptin during the development of mouse preimplantation embryos. Mol Cell Endocrinol. 2003;202:185–9.

    Article  CAS  PubMed  Google Scholar 

  • Keim AL, Chi MM, Moley KH. Hyperglycemia-induced apoptotic cell death in the mouse blastocyst is dependent on expression of p53. Mol Reprod Dev. 2001;60:214–24.

    Article  CAS  PubMed  Google Scholar 

  • Kleinhaus K, Harlap S, Perrin M, Manor O, Margalit-Calderon R, Opler M, Friedlander Y, Malaspina D. Prenatal stress and affective disorders in a population birth cohort. Bipolar Disord. 2013;15:92–9.

    Article  PubMed  Google Scholar 

  • Knobil E, Neill JD. Knobil and Neill’s physiology of reproduction. Amsterdam: Elsevier; 2006.

    Google Scholar 

  • Kolahi KS, Donjacour A, Liu X, Lin W, Simbulan RK, Bloise E, Maltepe E, Rinaudo P. Effect of substrate stiffness on early mouse embryo development. PLoS One. 2012;7:e41717.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krininger CE, 3rd, Stephens SH, Hansen PJ. Developmental changes in inhibitory effects of arsenic and heat shock on growth of pre-implantation bovine embryos. Mol Reprod Dev. 2002;63:335–40.

    Google Scholar 

  • Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–202.

    CAS  PubMed  Google Scholar 

  • Kwong WY, Osmond C, Fleming TP. Support for Barker hypothesis upheld in rat model of maternal undernutrition during the preimplantation period: application of integrated ʻrandom effectsʼ statistical model. Reprod Biomed Online. 2004;8:574–6.

    Article  CAS  PubMed  Google Scholar 

  • LaRosa C, Downs SM. Stress stimulates AMP-activated protein kinase and meiotic resumption in mouse oocytes. Biol Reprod. 2006;74:585–92.

    Article  CAS  PubMed  Google Scholar 

  • Larosa C, Downs SM. Meiotic induction by heat stress in mouse oocytes: involvement of AMP-activated protein kinase and MAPK family members. Biol Reprod. 2007;76:476–86.

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Maurange C, Ringrose L, Paro R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature. 2005;438:234–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125:301–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leese HJ. Human assisted conception: a cautionary tale. Lessons from domestic animals. Hum Reprod (Oxf). 1998;13(Suppl. 4):184–202.

    Article  Google Scholar 

  • Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays. 2002;24:845–9.

    Article  PubMed  Google Scholar 

  • Leese HJ. Metabolism of the preimplantation embryo: 40 years on. Reproduction. 2012;143:417–27.

    Article  CAS  PubMed  Google Scholar 

  • Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Masson F Christians E. HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress Chaperones. 2011;16:275–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li A, Chandrakanthan V, Chami O, OʼNeill C. Culture of zygotes increases TRP53 [corrected] expression in B6 mouse embryos, which reduces embryo viability. Biol Reprod. 2007;76:362–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21:521–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu J, Xu W, Sun T, Wang F, Puscheck E, Brigstock D, Wang QT, Davis R, Rappolee DA. Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation. Placenta. 2009;30:66–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Louden E, Chi MM, Moley KH. Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance. Reproduction. 2008;136:335–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu DP, Chandrakanthan V, Cahana A, Ishii S, OʼNeill C. Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development. J Cell Sci. 2004;117:1567–76.

    Article  CAS  PubMed  Google Scholar 

  • Madan P, Calder MD, Watson AJ. Mitogen-activated protein kinase (MAPK) blockade of bovine preimplantation embryogenesis requires inhibition of both p38 and extracellular signal-regulated kinase (ERK) pathways. Reproduction. 2005;130:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Maltepe E, Krampitz GW, Okazaki KM, Red-Horse K, Mak W, Simon MC, Fisher SJ. Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta. Development. 2005;132:3393–403.

    Article  CAS  PubMed  Google Scholar 

  • Mandl M, Ghaffari-Tabrizi N, Haas J, Nohammer G, Desoye G. Differential glucocorticoid effects on proliferation and invasion of human trophoblast cell lines. Reproduction. 2006;132:159–67.

    Article  CAS  PubMed  Google Scholar 

  • Mansouri L, Xie Y, Rappolee D. Adaptive and pathogenic responses to stress by stem cells during development. Cells. 2012;1:1197–224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134:521–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martindill DM, Risebro CA, Smart N, Franco-Viseras Mdel M, Rosario CO, Swallow CJ, Dennis JW, Riley PR. Nucleolar release of Hand1 acts as a molecular switch to determine cell fate. Nat Cell Biol. 2007;9:1131–41.

    Article  CAS  PubMed  Google Scholar 

  • Mezger V, Rallu M, Morimoto RI, Morange M, Renard JP. Heat shock factor 2-like activity in mouse blastocysts. Dev Biol. 1994;166:819–22.

    Article  CAS  PubMed  Google Scholar 

  • McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem. 2005;280:16925–33.

    Article  CAS  PubMed  Google Scholar 

  • McLaren A. Embryo growth during the immediate postimplantation period. in Embryogenesis in mammals. Amsterdam: Elsevier; 1976. pp. 53–66.

    Google Scholar 

  • McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ. Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol. 2002;22:8005–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monk C, Spicer J, Champagne FA. Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol. 2012;24:1361–76.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mudgett JS, Ding J, Guh-Siesel L, Chartrain NA, Yang L, Gopal S, Shen MM. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A. 2000;97:10454–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Natale DR, Paliga AJ, Beier F, DʼSouza SJ, Watson AJ. p38 MAPK signaling during murine preimplantation development. Dev Biol. 2004;268:76–88.

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (U.S.). Committee on Toxicity Testing and Assessment of Environmental Agents. Toxicity testing in the 21st century: a vision and a strategy. Washington, DC: National Academies Press; 2007.

    Google Scholar 

  • Neugebauer R, Hoek HW, Susser E. Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA. 1999;282:455–62.

    Article  CAS  PubMed  Google Scholar 

  • Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3:97–106.

    Article  PubMed  Google Scholar 

  • OʼNeill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod. 1997;56:229–37.

    Article  PubMed  Google Scholar 

  • Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009;461:537–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paliga AJ, Natale DR, Watson AJ. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8–16-cell stage during preimplantation development. Biol Cell. 2005;97:629–40.

    Article  CAS  PubMed  Google Scholar 

  • Patel Y, Kim H, Rappolee DA. A role for hepatocyte growth factor during early postimplantation growth of the placental lineage in mice. Biol Reprod. 2000;62:904–12.

    Article  CAS  PubMed  Google Scholar 

  • Pribenszky C, Vajta G, Molnar M, Du Y, Lin L, Bolund L, Yovich J. Stress for stress tolerance? A fundamentally new approach in mammalian embryology. Biol Reprod. 2010;83:690–7.

    Article  CAS  PubMed  Google Scholar 

  • Proud CG. eIF2 and the control of cell physiology. Semin Cell Dev Biol. 2005;16:3–12.

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Diaz-Cueto L, Schwarze JE, Takahashi Y, Imai M, Isuzugawa K, Yamamoto S, Chang KT, Gerton GL, Imakawa K. Effects of progranulin on blastocyst hatching and subsequent adhesion and outgrowth in the mouse. Biol Reprod. 2005;73:434–42.

    Article  CAS  PubMed  Google Scholar 

  • Rappolee DA. Itʼs not just babyʼs babble/Babel: recent progress in understanding the language of early mammalian development: a minireview. Mol Reprod Dev. 1999;52:234–40.

    Article  CAS  PubMed  Google Scholar 

  • Rappolee DA. Impact of transient stress and stress enzymes on development. Dev Biol. 2007;304:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Rappolee DA, Sturm KS, Behrendtsen O, Schultz GA, Pedersen RA, Werb Z. Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev. 1992;6:939–52.

    Article  CAS  PubMed  Google Scholar 

  • Rappolee DA, Basilico C, Patel Y, Werb Z. Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development. 1994;120:2259–69.

    CAS  PubMed  Google Scholar 

  • Rappolee DA, Awonuga AO, Puscheck EE, Zhou S, Xie Y. Benzopyrene and experimental stressors cause compensatory differentiation in placental trophoblast stem cells. Syst Biol Reprod Med. 2010;56:168–83.

    Article  CAS  PubMed  Google Scholar 

  • Rappolee DA, Xie YF, Zhou SC, Huttemann M, Lee IS, Puscheck EE. Hypoxia induces maximal preparation for, but incomplete differentiation of stem cells that is associated with decreased mitochondrial function and increased expression of two potency factors. Fertil Steril. 2011a;96:S169.

    Article  Google Scholar 

  • Rappolee DA, Xie YF, Zhou SC, Slater J, Puscheck EE. Cellular and toxicological stress cause adaptive “Prioritized” and “Compensatory” differentiation of embryonic and placental stem cells of the implanting blastocyst. Fertil Steril. 2011b;96:S171.

    Article  Google Scholar 

  • Rappolee DA, Xie Y, Slater JA, Zhou S, Puscheck EE. Toxic stress prioritizes and imbalances stem cell differentiation: implications for new biomarkers and in vitro toxicology tests. Syst Biol Reprod Med. 2012;58:33–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rappolee DA, Zhou S, Puscheck EE, Xie Y. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells. Reproduction. 2013;145:R139–55.

    Article  CAS  PubMed  Google Scholar 

  • Rassoulzadegan M, Rosen BS, Gillot I, Cuzin F. Phagocytosis reveals a reversible differentiated state early in the development of the mouse embryo. Embo J. 2000;19:3295–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ratchford AM, Chang AS, Chi MM, Sheridan R, Moley KH. Maternal diabetes adversely affects AMP-activated protein kinase activity and cellular metabolism in murine oocytes. Am J Physiol Endocrinol Metab. 2007;293:E1198–206.

    Article  CAS  PubMed  Google Scholar 

  • Redman CW. Current topic: pre-eclampsia and the placenta. Placenta. 1991;12:301–08.

    Article  CAS  PubMed  Google Scholar 

  • Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308:1592–4.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RM. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis–2012 Curt Richter Award Winner. Psychoneuroendocrinology. 2013;38:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Richards T, Wang F, Liu L, Baltz JM. Rescue of postcompaction-stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol Reprod. 2010; 82:769–77.

    Article  CAS  PubMed  Google Scholar 

  • Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86:1252–65, 1265 e1251–36.

    Article  CAS  PubMed  Google Scholar 

  • Rivera RM, Rinaudo P. Bovine preimplantation embryo development is affected by the stiffness of the culture substrate. Mol Reprod Dev. 2013;80:184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet. 2008;17:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Robertson SA, Sjoblom C, Jasper MJ, Norman RJ, Seamark RF. Granulocyte-macrophage colony-stimulating factor promotes glucose transport and blastomere viability in murine preimplantation embryos. Biol Reprod. 2001;64:1206–15.

    Article  CAS  PubMed  Google Scholar 

  • Salameh W, Helliwell JP, Han G, McPhaul L, Khorram O. Expression of endometrial glycogen synthase kinase-3beta protein throughout the menstrual cycle and its regulation by progesterone. Mol Hum Reprod. 2006;12:543–9.

    Article  CAS  PubMed  Google Scholar 

  • Samavati L, Lee I, Mathes I, Lottspeich F, Huttemann M. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem. 2008;283:21134–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF. JunB is essential for mammalian placentation. Embo J. 1999;18:934–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sebastiano V, Dalvai M, Gentile L, Schubart K, Sutter J, Wu GM, Tapia N, Esch D, Ju JY, Hubner K, Bravo MJ, Scholer HR, et al. Oct1 regulates trophoblast development during early mouse embryogenesis. Development. 2010;137:3551–60.

    Article  CAS  PubMed  Google Scholar 

  • Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ʻprogramming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3:479–88.

    Article  CAS  PubMed  Google Scholar 

  • Seval Y, Cakmak H, Kayisli UA, Arici A. Estrogen-mediated regulation of p38 mitogen-activated protein kinase in human endometrium. J Clin Endocrinol Metab. 2006;91:2349–57.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro SS, Dyer SD, Colas AE. Progesterone-induced glycogen accumulation in human endometrium during organ culture. Am J Obstet Gynecol. 1980;136:419–25.

    CAS  PubMed  Google Scholar 

  • Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci. 2009;111:202–25.

    Article  CAS  PubMed  Google Scholar 

  • Slater JA, Zhou S, Puscheck E, Rappolee D. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev. 2014;22:3049–64. (In Press).

    Article  CAS  Google Scholar 

  • Steeves CL, Baltz JM. Regulation of intracellular glycine as an organic osmolyte in early preimplantation mouse embryos. J Cell Physiol. 2005;204:273–9.

    Article  CAS  PubMed  Google Scholar 

  • Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J. 2000;345(Pt 3):437–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stojkovic M, Westesen K, Zakhartchenko V, Stojkovic P, Boxhammer K, Wolf E. Coenzyme Q(10) in submicron-sized dispersion improves development, hatching, cell proliferation, and adenosine triphosphate content of in vitro-produced bovine embryos. Biol Reprod. 1999;61:541–7.

    Article  CAS  PubMed  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132:2093–102.

    Article  CAS  PubMed  Google Scholar 

  • Stumpo DJ, Byrd NA, Phillips RS, Ghosh S, Maronpot RR, Castranio T, Meyers EN, Mishina Y, Blackshear PJ. Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol. 2004;24:6445–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.

    Article  CAS  PubMed  Google Scholar 

  • Tantin D, Schild-Poulter C, Wang V, Hache RJ, Sharp PA. The octamer binding transcription factor Oct-1 is a stress sensor. Cancer Res. 2005;65:10750–8.

    Article  CAS  PubMed  Google Scholar 

  • Thompson JG, Kind KL, Roberts CT, Robertson SA, Robinson JS. Epigenetic risks related to assisted reproductive technologies: short- and long-term consequences for the health of children conceived through assisted reproduction technology: more reason for caution? Hum Reprod. 2002;17:2783–6.

    Article  CAS  PubMed  Google Scholar 

  • Tong S, Wallace EM, Rombauts L. Association between low day 16 hCG and miscarriage after proven cardiac activity. Obstet Gynecol. 2006;107:300–4.

    Article  CAS  PubMed  Google Scholar 

  • Van Blerkom J Cox H Davis P. Regulatory roles for mitochondria in the peri-implantation mouse blastocyst: possible origins and developmental significance of differential DeltaPsim. Reproduction. 2006;131:961–76.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Martin A, Vellon L, Quiros PM, Cufi S, Ruiz de Galarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, Lopez-Otin C, Menendez JA. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle. 2012;11:974–89.

    Article  CAS  PubMed  Google Scholar 

  • Voss AK, Thomas T, Gruss P. Mice lacking HSP90beta fail to develop a placental labyrinth. Development. 2000;127:1–11.

    CAS  PubMed  Google Scholar 

  • Wale PL, Gardner DK. Oxygen affects the ability of mouse blastocysts to regulate ammonium. Biol Reprod. 2013;89:75.

    Article  PubMed  CAS  Google Scholar 

  • Wallace JM, Bourke DA, Aitken RP, Cruickshank MA. Switching maternal dietary intake at the end of the first trimester has profound effects on placental development and fetal growth in adolescent ewes carrying singleton fetuses. Biol Reprod. 1999;61:101–10.

    Article  CAS  PubMed  Google Scholar 

  • Wallace J, Bourke D, Da Silva P, Aitken R. Nutrient partitioning during adolescent pregnancy. Reproduction. 2001;122:347–57.

    Article  CAS  PubMed  Google Scholar 

  • Wallace JM, Bourke DA, Da Silva P, Aitken RP. Influence of progesterone supplementation during the first third of pregnancy on fetal and placental growth in overnourished adolescent ewes. Reproduction. 2003;126:481–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell. 2004;6:133–44.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Puscheck EE, Lewis JJ, Trostinskaia AB, Wang F, Rappolee DA. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril. 2005;83(Suppl. 1):1144–54.

    Article  CAS  PubMed  Google Scholar 

  • Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34:7–11.

    Article  CAS  PubMed  Google Scholar 

  • Wilcox AJ, Weinberg CR, OʼConnor JF, Baird DD, Schlatterer JP, Canfield RE, Armstrong EG, Nisula BC. Incidence of early loss of pregnancy. N Engl J Med. 1988;319:189–94.

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003;13:2004–8.

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Gentile L, Fuchikami T, Sutter J, Psathaki K, Esteves TC, Arauzo-Bravo MJ, Ortmeier C, Verberk G, Abe K, Scholer HR. Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development. 2010;137:4159–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie Y, Puscheck EE, Rappolee DA. Effects of SAPK/JNK inhibitors on preimplantation mouse embryo development are influenced greatly by the amount of stress induced by the media. Mol Hum Reprod. 2006a;12:217–24.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wang F, Zhong W, Puscheck E, Shen H, Rappolee DA. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod 2006b;75:45–5.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wang F, Puscheck EE, Rappolee DA. Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev. 2007a;74:1287–94.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Zhong W, Wang Y, Trostinskaia A, Wang F, Puscheck EE, Rappolee DA. Using hyperosmolar stress to measure biologic and stress-activated protein kinase responses in preimplantation embryos. Mol Hum Reprod. 2007b;13:473–81.

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang J, Wu J, Viollet B, Zou MH. Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes. 2008a;57:3222–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie Y, Liu J, Proteasa S, Proteasa G, Zhong W, Wang Y, Wang F, Puscheck EE, Rappolee DA. Transient stress and stress enzyme responses have practical impacts on parameters of embryo development, from IVF to directed differentiation of stem cells. Mol Reprod Dev. 2008b;75:689–97.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Abdallah ME, Awonuga AO, Slater JA, Puscheck EE, Rappolee DA. Benzo(a)pyrene causes PRKAA1/2-dependent ID2 loss in trophoblast stem cells. Mol Reprod Dev. 2010;77:533–9.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Awonuga AO, Zhou S, Puscheck EE, Rappolee DA. Interpreting the stress response of early mammalian embryos and their stem cells. Int Rev Cell Mol Biol. 2011;287:43–95.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Awonuga A, Liu J, Rings E, Puscheck EE, Rappolee DA. Stress induces AMPK-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells. Stem Cells Dev. 2013a;22:1564–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie Y, Zhou S, Jiang Z, Dai J, Puscheck EE, Lee I, Parker G, Huttemann M, Rappolee DA. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res. 2014;13:478–491.

    Google Scholar 

  • Xie Y, Awonuga A, Liu J, Rings E, Puscheck EE, Rappolee DA. Stress induces AMP-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells. Stem Cells Dev. 2013c;22:1564–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie Y, Zhou S, Jiang Z, Puscheck E, Lee I, Parker GC, Huttemann M, Rappolee D. Hypoxic stress induces SAPK-dependent, imbalanced trophoblast stem cell differentiation but does not sustain it due to mitochondrial insufficiency. Stem Cell Res. 2014; In Press.

    Google Scholar 

  • Xu P, Davis RJ. c-Jun NH2-terminal kinase is required for lineage-specific differentiation but not stem cell self-renewal. Mol Cell Biol. 2010;30:1329–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Ding C, Khoudja R, Lin M, Dai J, Puscheck E, Awonuga A, Rappolee D, Zhou C. Comparison of 2 %, 5 % and 20 % O2 on the development of cryopreserved human embryos from day 3 through blastocyst. Hum Reprod. 2014a; To be submitted.

    Google Scholar 

  • Yang Y, Jiang Z, Bolnick A, Dai J, Puscheck EE, Rappolee DA. Determining the utility of SAPK and AMPK activities as biomarkers for measuring stressful O2 levels in stem cells of the blastocyst. Fertil Steril. submitted 2014b.

    Google Scholar 

  • Yaron Y, Ochshorn Y, Heifetz S, Lehavi O, Sapir Y, Orr-Urtreger A. First trimester maternal serum free human chorionic gonadotropin as a predictor of adverse pregnancy outcome. Fetal Diagn Ther. 2002;17:352–6.

    Article  PubMed  Google Scholar 

  • Zhong W, Xie Y, Wang Y, Lewis J, Trostinskaia A, Wang F, Puscheck EE, Rappolee DA. Use of hyperosmolar stress to measure stress-activated protein kinase activation and function in human HTR cells and mouse trophoblast stem cells. Reprod Sci. 2007;14:534–47.

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, Xie Y, Abdallah M, Awonuga AO, Slater JA, Sipahi L, Puscheck EE, Rappolee DA. Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction. 2010;140:921–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou S, Xie Y, Puscheck EE, Rappolee DA. Oxygen levels that optimize TSC culture are identified by maximizing growth rates and minimizing stress. Placenta. 2011;32:475–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This was supported by grants to DAR from NICHD, NIH, (1R03HD06143101, R01HD40972A) and from the Wayne State University Office of the Vice President for Research and to the Mary Iacobelli for the Endowed Chair for EEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Rappolee .

Editor information

Editors and Affiliations

Glossary

Acronyms and abbreviations used

AMPK

AMP-activated protein kinase heterotrimer stress kinase (aka Prkaa1/2 is catalytic subunit)

ART

assisted reproductive technology

ATF3/4/6

activating transcription factor 3/4/6 are members of the ATF/CREB family of transcription factors

ATP

adenosine triphosphate

CaMKK

calmodulin kinase kinase

Cdx2

caudal-type homeodomain protein 2 transcription factor

CHOP10

C/EBP homologous protein-10, aka growth arrest and DNA damage/GADD153

CpG

cytosine guanosine islands

DDIT3

DNA damage inducible transcript 3

DNA

deoxyribonucleic acid

dsRNA

double strand RNA

eIF2α

elongation initiation factor 2 alpha

EMT

epithelial mesenchymal transition

ERRβ

estrogen receptor related, beta transcription factor

ER stress

endoplasmic reticulum sensed stress

ERK1/3/5

extracellular receptor kinase 1/3/5

ESC

embryonic stem cells

FGF4

fibroblast growth factor 4

Foxo

Fox, A subclass of winged helix DNA-binding proteins (related to Forkhead family).

G1/S

Cell cycle Gap 1 to synthesis phase, aka Start

Gastrulation

formation and patterning of the three definitive embryo germ cell layers; endoderm, mesoderm, and ectoderm.

GCM1

glial cells missing 1 transcription factor

GCN2

germinal cell nucleus 1

Genotoxic stress

nuclear stress affecting DNA integrity

Hand1

heart and mesoderm inducer transcription factor

hCG

human chorionic gonadotropin

HDAC

histone deacetylase enzyme

HIF1

hypoxia inducible factor 1 transcription factor

HIF1

hypoxia inducible factor 1 transcription factor

HRI

Heme-Regulated Inhibitor

HSD2

11β-hydroxysteroid dehydrogenase type

HSF1

heat shock factor-1

HSP70.1/90

heat shock proteins 22/68/70.1

HuR

Hu protein R (mRNA stabilizing protein)

ICM

inner cell mass of the blastocyst, precursor stem cells of extraembryonic endoderm and mesoderm and of the three germ cell layers at gastrulation.

Id2

Inhibitor of differentiation 2 dominant negative transcription factor

iPS cells

inducible pluripotent stem cells

IRE1

Inositol-requiring enzyme 1; ER transmembrane kinase/ribonuclease

ISH

In situ hybridization

IVF

in vitro fertilization

JunB/C

Jun transcription factor in the AP1 family

KSOM

Potassium (K) Simplex optimized media. Least stressful media.

LKB1

liver kinase B

MDM2

Mouse double minute 2

MRP

Maternal recognition of pregnancy Secreted signal from the mammalian conceptus to keep the implantation site prepared for invasion by and nutrition or the conceptus

M16

Preimplantation culture media, stressful

MAPK/ERK1/3

mitogen-activated protein kinase

MEK1/2

mitogen-activated protein kinase kinase kinase 1/2 tyrosine threonine dual protein kinase

MEKK4

mitogen-activated protein kinase kinase kinase 4 tyrosine threonine dual protein kinase that activates SAPK and p38MAPK

mRNA

messenger ribonucleic acid

MT1

metal regulatory transcription factor 1

NACHT

(see NALP5) Nalp5, leucine rich repeat and PYD containing 5

NaCl

sodium chloride

NALP5/Mater

Nacht Domain-, Leucine-Rich Repeat-, and PYD-Containing Protein 5/maternal antigen that embryos require

Nfat5

Nuclear factor of activated T-cells

NRF2

nuclear factor erythroid-derived factor 2 (aka KEAP2)

Nuclear stress responses

see genotoxic stress

P38MAPK

p38 mitogen-activated protein kinase (aka MAPK11/12/13/14)

P53

Tumor suppressor factor, (aka TRP53)

PAF

Platelet activating factor

PERK

Eukaryotic translation initiation factor 2-alpha kinase 3, aka PRKR-like endoplasmic reticulum kinase, and aka protein kinase R (PKR)-like endoplasmic reticulum kinase,

PI3K

Phosphoinositol 1,3 kinase

PL1

Placental lactogen 1 rodent hormone produced by TGC (aka chorionic sommatomammotropin, CSH1)

PKA

protein kinase A

PKM2

pyruvate kinase 2 embryonic form

PKR

protein kinase RNA

PLK4

polo-like kinase (PLK)4

PLPA

Prolactin-like protein A

PPAR

Peroxisome proliferator-activated receptor transcription factor

Ppp1r15a/b

Protein phosphatase 1 subunit regulatory subunit 15a/b

PRC2

polycombs regulatory complex 2

Oct4

octamer binding transcription factor 4 (aka Pou5f1)

SAPK

stress-activated protein kinase

TF

Transcription factors

TGC

Trophoblast giant cell

TNFα

tumor necrosis factor alpha

TSA

trichostatin A

TSC

trophoblast stem cell

TSC2

tuberous sclerosis complex

UNC2

uncoupling protein-2

XBP1

X-box binding protein 1/activating transcription factor 4/6)

XEN

extraembryonic endoderm

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Puscheck, E., Awonuga, A., Yang, Y., Jiang, Z., Rappolee, D. (2015). Molecular Biology of the Stress Response in the Early Embryo and its Stem Cells. In: Leese, H., Brison, D. (eds) Cell Signaling During Mammalian Early Embryo Development. Advances in Experimental Medicine and Biology, vol 843. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2480-6_4

Download citation

Publish with us

Policies and ethics