Skip to main content

Role of Alcohol Dehydrogenases in Steroid and Retinoid Metabolism

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 6

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 414))

Abstract

Retinoid and steroid hormones play an important role in the regulation of differentiation and maintenance of a wide range of animal tissues. These tissues include reproductive organs, liver, kidney, heart, brain, and skin of species from fish to humans. Several isozymes of cytosolic NAD+-dependent 40 kDa subunit molecular weight alcohol dehydrogenases catalyze oxidation and reduction of retinoid and steroid substrates in vitro. The isozymes are grouped into classes based on the similarities in amino acid sequence and their substrate specificities. Currently, a total of six classes of mammalian ADHs are known (Jörnvall and Höög, 1995). Each class has a characteristic tissue-specific and developmental pattern of expression (Edenberg and Bosron, 1996). Class I ADHs are basic isozymes with a wide range of Km for ethanol (0.05–36 mM). In humans, class I is comprised of multiple molecular forms, β1β1, β2β2, β3β3, γ1γ1, γ2γ2, α α, and their heterodimers. During development, ᾲᾳ is the first ADH isozyme detectable in fetal liver. β-ADH appears by mid-gestation, and γ-ADH is first detected about six month after birth. Human class II π-ADH has a relatively high KM for ethanol (34 mM) and is found in fetal and adult liver. The ubiquitously expressed class III ADH, also known as glutathione-dependent formaldehyde dehydrogenase, is not saturable with ethanol and is not active with either steroid or retinoid alcohols. Human class IV σ-ADH exhibits high KM for ethanol (28 mM) and is present in the adult stomach, esophagus and epithelium. In mice embryos, class IV ADH is detected on day 7.5 of development in the craniofacial region as well as trunk and forelimb bud mesenchyme (Ang, H.L. et al., 1996). Little is known about the catalytic properties of human class V and deermouse class VI ADH isozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang, H.L., Deltour, L., Hayamizu, T.F., Žgombić-Knight, M. and Duester, G.: Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development to class IV alcohol dehydrogenase gene expression. J. Biol. Chem. 271 (1996) 9526–9534.

    Article  PubMed  CAS  Google Scholar 

  • Boleda, M.D., Saubi, N., Farrés, J. and Parés, X.: Physiological substrates for rat alcohol dehydrogenase classes: Aldehydes of lipid peroxidation, ω-hydroxyfatty acids, and retinoids. Arch. Biochem. Biophys. 307 (1993) 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Chai, X., Zhai, Y. Popescu, G. and Napoli, J.L.: Cloning of a cDNA for a second retinol dehydrogenase type II. J. Biol. Chem. 270 (1995) 28408–28412.

    Article  PubMed  CAS  Google Scholar 

  • Cronholm, T., Larsén, C., Sjövall, J., Theorell and Åkeson, Å.: Steroid oxidoreductase activity of alcohol dehydrogenases from horse, rat, and human liver. Acta Chemica Scandinavica B 29 (1975) 571–576.

    Article  CAS  Google Scholar 

  • Domm, L.V. and Ericson, G.C.: 3β-Hydroxysteroid dehydrogenase activity in the adrenals of normal and hypo-physectomized chick embryos. Proc. Soc. Exp. Biol. Med. 140 (1972) 1215–1220.

    PubMed  CAS  Google Scholar 

  • Edenberg, H.J. and Bosron, W.F.: Alcohol dehydrogenases. Comprehensive Toxicology (1996), in press.

    Google Scholar 

  • Feng, D.F. and Doolittle R.F.: Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 183 (1990) 375–389.

    Article  PubMed  CAS  Google Scholar 

  • Ghraf, R., Lax, E.R. and Schriefers, H.: The hypophysis in the regulation of androgen and oestrogen dependent enzyme activities of steroid hormone metabolism in rat liver cytosol. Hoppe-Seyler’s Z. Physiol. Chem. 356 (1975) 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Grün, F., Noy, N., Hämmerling, U. and Buck, J.: Purification, cloning, and bacterial expression of retinol dehydratase from Spodoptera frugiperda. J. Biol. Chem. 271 (1996) 16135–16138.

    Article  PubMed  Google Scholar 

  • Gudas, L.J.: Retinoids and vertebrate development. J. Biol. Chem. 269 (1994) 15399–15402.

    PubMed  CAS  Google Scholar 

  • Hjelmqvist, L., Estonius, M., Jörnvall, H.: The vertebrate alcohol dehydrogenase system: variable class II type form elucidates separate stages of enzymogenesis. Proc. Natl. Acad. Sci. USA 92 (1995) 10904–10908.

    Article  PubMed  CAS  Google Scholar 

  • Jörnvall, H. and Höög, J.-O.: Nomenclature of alcohol dehydrogenases. Alcohol & Alcoholism 30 (1995) 153–161.

    Google Scholar 

  • Julia, P., Farres, J., Pares, X.: Ocular alcohol dehydrogenase in the rat: Regional distribution and kinetics of ADH-1 isoenzyme with retinol and retinal. Exp. Eye Res. 42 (1986) 305–314.

    Article  PubMed  CAS  Google Scholar 

  • Labrie, F., Bélanger A., Simard, J., Luu-The, V. and Labrie, C.: DHEA and peripheral androgen and estrogen formation: Intracrinology. Ann. N.-Y. Acad. Sci. 774 (1995) 17–28.

    Article  Google Scholar 

  • Labrie, F., Simard, J., Luu-The, V., Bélanger, A. and Pelletier, G.: Structure, function and tissue-specific gene expression of 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidogenic tissues. J. Steroid Biochem. Molec. Biol. 43 (1992) 805–826.

    Article  PubMed  CAS  Google Scholar 

  • LeVine, J.P. and Haley, L.E.: Gene activation of alcohol dehydrogenase in Japanese quail and chicken-quail hybrid embryos. Biochemical Genetics 13 (1975) 435–446.

    Article  PubMed  CAS  Google Scholar 

  • McEvily, A.J., Holmquist, B., Auld, D.S. and Vallee, B.L.: 3β-Hydroxy-5β-steroid dehydrogenase activity of human liver alcohol dehydrogenase is specific to γ-subunits. Biochemistry 27 (1988) 4284–4288.

    Article  PubMed  CAS  Google Scholar 

  • Osmond, M.K., Butler, A.J., Voon, F.C.T. and Bellairs, R.: The effects of retinoic acid on heart formation in the early chick embryo. Development 113 (1991) 1405–1417.

    PubMed  CAS  Google Scholar 

  • Park, D.-H. and Plapp, B.V.: Isoenzymes of horse liver alcohol dehydrogenase active on ethanol and steroids. J. Biol. Chem. 266 (1991) 13296–13302.

    PubMed  CAS  Google Scholar 

  • Payne, A.H. and Jaffe, R.B.: Comparison of androgen synthesis in human fetal testis and adrenal: 3β-Hydroxysteroid dehydrogenase-isomerase and 17β-steroid dehydrogenase activities. Biochim. Biophys. Acta 279 (1972) 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Ross, A.C.: Cellular metabolism and activation of retinoids: Roles of cellular retinoid-binding proteins. FASEB J. 7 (1993) 317–327.

    PubMed  CAS  Google Scholar 

  • Simon, A., Hellman, U., Wernstedt, C. and Eriksson, U.: The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J. Biol. Chem. 270 (1995) 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H.-W. and Plapp, B.V.: Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family. J. Mol. Evol. 34 (1992) 522–535.

    Article  PubMed  CAS  Google Scholar 

  • Thaller, C. and Eichele, G.: Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327 (1987) 625–628.

    Article  PubMed  CAS  Google Scholar 

  • Waller, G. and Theorell, H.: Liver alcohol dehydrogenase as a 3β-hydroxy-5β-cholanic acid dehydrogenase. Arch. Biochem. Biophys. 111 (1965) 671–684.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.-N., Davis, G.J., Hurley, T.D., Stone, C.L., Li, T.-K. and Bosron, W.F.: Catalytic efficiency of human alcohol dehydrogenases for retinol oxidation and retinal reduction. Alcohol. Clin. Exp. Res. 18 (1994) 587–591.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kedishvili, N.Y., Stone, C.L., Popov, K.M., Chernoff, E.A.G. (1996). Role of Alcohol Dehydrogenases in Steroid and Retinoid Metabolism. In: Weiner, H., Lindahl, R., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 6. Advances in Experimental Medicine and Biology, vol 414. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5871-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5871-2_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7692-7

  • Online ISBN: 978-1-4615-5871-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics