Skip to main content

Cytokines and Tear Function in Ocular Surface Disease

  • Chapter
Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 438))

Abstract

It is likely that rates of tear production and turnover are important in determining the cytokine environment of ocular surface tissues, by supplying cytokines in tear fluid and by clearing those produced at the ocular surface. Epidermal growth factor (EGF), which is released into tear fluid by the lacrimal gland,1–4 influences healing of corneal epithelial and conjunctival wounds.5–10 These concentrations vary inversely with reflex tear secretion,3,4 but under normal conditions in vivo, the relationships between tear concentrations of EGF and other variables such as age, gender, tear production, and clearance have not been examined. This information potentially could contribute to a better understanding of the role of EGF in maintenance of ocular surface integrity under normal circumstances, so in the first part (Tear EGF Concentrations in Normals) of a two-part study, we examined these influences in a large group of normal subjects.11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshino K Monroy DC, Pflugfelder SC. Cholinergie stimulation of lactoferrin and EGF secretion by the human lacrimal gland. Cornea. 1996; 15: 617–621.

    Article  PubMed  CAS  Google Scholar 

  2. Ohashi Y, Motokura M, Kinoshita Y, et al. Presence of epidermal growth factor in human tears. Invest Ophthalmol Vis Sci. 1989; 30: 1879–1882.

    PubMed  CAS  Google Scholar 

  3. van Setten G, Viinikka L, Tervo T, Pesonen K, Tarkkanen A, Perheentupa J. Epidermal growth factor is a constant component of normal tears. Graefes Arch Clin Exp Ophthalmol. 1989; 227: 184–187.

    Article  PubMed  Google Scholar 

  4. van Setten G. Epidermal growth factor in human tear fluid: Increased release but decreased concentrations during reflex tearing. Curr Eye Res. 1990; 9: 79–83.

    Article  PubMed  Google Scholar 

  5. Watanabe K, Nakagawa S, Nishida T. Stimulatory effects of fibronectin and EGF on migration of corneal epithelial cells. Invest Ophthalmol Vis Sci. 1987; 28: 205–211.

    PubMed  CAS  Google Scholar 

  6. Mishima H, Nakamura M, Murakami J, Nishida T, Otori T. Transforming growth factor-beta modulates effects of epidermal growth factor on corneal epithelial cells. Curr Eye Res. 1992; 11: 691–696.

    Article  PubMed  CAS  Google Scholar 

  7. Grant MB, Khaw PT, Schultz GS, Adams JL, Shimizu RW. Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-beta on corneal cell chemotaxis. Invest Ophthalmol Vis Sci. 1992; 33: 3292–3301.

    PubMed  CAS  Google Scholar 

  8. Boisjoly HM, Laplante C, Bernatchez SF, et al. Effects of EGF, IL-I and their combination on in vitro corneal epithelial wound closure and cell chemotaxis. Exp Eye Res. 1993; 57: 293–300.

    Article  PubMed  CAS  Google Scholar 

  9. Nishida T, Nakamura M, Murakami J, Mishima H, Otori T. Epidermal growth factor stimulates corneal epithelial cell attachment to fibronectin through a fibronectin receptor system. Invest Ophthalmol Vis Sci. 1992; 33: 2464–2469.

    PubMed  CAS  Google Scholar 

  10. Wilson SE, He YG, Weng J, Zieske JD, Jester JV, Schultz GS. Effect of epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, on proliferation, motility and differentiation of human corneal epithelial cells. Exp Eye Res. 1994; 59: 665–678.

    Article  PubMed  CAS  Google Scholar 

  11. Nava A, Barton K, Monroy DC, Pflugfelder SC. The effects of age, gender and fluid dynamics on the concentration of tear film epidermal growth factor. Cornea. 1997; 16: 430–438.

    Article  PubMed  CAS  Google Scholar 

  12. Barton K, Nava A, Monroy DC, Pflugfelder SC. Inflammatory cytokines in the tears of patients with ocular rosacea. Ophthalmology. 1997;104:In press.

    Google Scholar 

  13. Jenkins MS, Brown SI, Lempert SL, Weinberg RJ. Ocular rosacea. Am J Ophthalmol. 1979; 88: 619–622.

    Google Scholar 

  14. Pflugfelder SC, Tseng SCG, Yoshino K, Monroy DC, Felix C, Reis BL. Correlation of goblet cell density and mucosal epithelial membrane mucin expression with rose bengal staining in patients with ocular irriation. Ophthalmology. 1997; 104: 222–235.

    Article  Google Scholar 

  15. Shimazaki J, Sakata M, Tsubota K. Ocular surface changes and discomfort in patients with meibomian gland dysfunction. Arch Ophthalmol. 1995; 113: 1266–1270.

    Article  PubMed  CAS  Google Scholar 

  16. McCulley JP, Sciallis GF. Meibomian keratoconjunctivitis. Am J Ophthalmol. 1977; 84: 788–792.

    PubMed  CAS  Google Scholar 

  17. Mathers WD. Ocular evaporation and meibomian gland dysfunction in dry eye. Ophthalmology. 1993; 100: 347–351.

    PubMed  CAS  Google Scholar 

  18. Lemp MA. Report of the National Eye Institute/industry workshop on clinical trials in dry eyes. CLAO J. 1995; 21: 221–232.

    PubMed  CAS  Google Scholar 

  19. Xu K, Yagi Y, Toda I, Tsubota K. Tear function index: A new measure of dry eye. Arch Ophthalmol. 1995; 113: 84–88.

    CAS  Google Scholar 

  20. Gupta A, Monroy DC, Zhonghua J, Yoshino K, Huang A, Pflugfelder SC. Transforming growth factor beta-1 and beta-2 in human tear fluid. Curr Eye Res. 1996; 15: 605–614.

    Article  PubMed  CAS  Google Scholar 

  21. Gupta C, Singh M. Stimulation of epidermal growth factor gene expression during the fetal mouse reproductive tract differentiation: Role of androgen and its receptor. Endocrinology. 1996; 137: 705–711.

    Article  PubMed  CAS  Google Scholar 

  22. Motta M, Dondi D, Moretti RM, et al. Role of growth factors, steroid and peptide hormones in the regulation of human prostatic tumor growth. [Review]. J Steroid Biochem Mol Biol. 1996; 56: 107–111.

    Article  PubMed  CAS  Google Scholar 

  23. Yang Y, Chisholm GD, Habib FK. Epidermal growth factor and transforming growth factor alpha concentrations in BPH and cancer of the prostate: Their relationships with tissue androgen levels. Br J Cancer. 1993; 67: 152–155.

    Article  PubMed  CAS  Google Scholar 

  24. Sullivan DA, Bloch KJ, Allansmith MR. Hormonal influence on the secretory immune system of the eye: Androgen regulation of secretory component levels in rat tears. J Immunol. 1984; 132: 1130–1135.

    PubMed  CAS  Google Scholar 

  25. Sullivan DA, Allansmith MR. Hormonal influence on the secretory immune system of the eye: Endocrine interactions in the control of IgA and secretory component levels in tears of rats. Immunology. 1987; 60: 337–343.

    PubMed  CAS  Google Scholar 

  26. Gao J, Lambert RW, Wickham LA, Banting G, Sullivan DA. Androgen control of secretory component mRNA levels in the rat lacrimal gland. J Steroid Biochem Mol Biol. 1995; 52: 239–249.

    Article  PubMed  CAS  Google Scholar 

  27. Cornell-Bell AH, Sullivan DA, Allansmith MR. Gender-related differences in the morphology of the lacrimal gland. Invest Ophthalmol Vis Sci. 1985; 26: 1170–1175.

    PubMed  CAS  Google Scholar 

  28. Sato EH, Sullivan DA. Comparative influence of steroid hormones and immunosuppressive agents on autoimmune expression in lacrimal glands of a female mouse model of Sjögren’s syndrome. Invest Ophthalmol Vis Sci. 1994; 35: 2632–2642.

    PubMed  CAS  Google Scholar 

  29. Jordan A, Baum J. Basic tear flow: Does it exist? Ophthalmology. 1980; 87: 920–930.

    PubMed  CAS  Google Scholar 

  30. McGill JI, Liakos G, Seal DV. Normal tear protein profiles and age-related changes. Br J Ophthalmol. 1984; 68: 316–320.

    Article  PubMed  CAS  Google Scholar 

  31. Mathers WD, Lane JA, Zimmerman MB. Tear film changes associated with normal aging. Cornea. 1996; 15: 229–234.

    Article  PubMed  CAS  Google Scholar 

  32. Xu K, Tsubota K. Correlation of tear clearance rate and fluorophotometric assessment of tear turnover. Br J Ophthalmol. 1995; 79: 1042–1045.

    Article  PubMed  CAS  Google Scholar 

  33. Pflugfelder SC, Tseng SCG, Pepose JS, Fletcher MA, Klimas NG, Feuer W. Epstein-Barr viral infection and immunologic dysfunction in patients with aqueous tear deficiency. Ophthalmology. 1990; 97: 313–323.

    PubMed  CAS  Google Scholar 

  34. Mishima S, Gasset A, Klyce SD, Jr., Baum JL. Determination of tear volume and tear flow. Invest Ophthalmol. Vis Sci 1966; 5: 264–276.

    CAS  Google Scholar 

  35. Hogquist KA, Nett MA, Unanue ER, Chaplin DD. Interleukin-1 is processed and released during apoptosis. Proc Natl Acad Sci USA. 1991; 88: 8485–8489.

    Article  PubMed  CAS  Google Scholar 

  36. Dinarello CA, Wolff SM. The role of interleukin-1 in disease. N Engl J Med. 1993; 328: 106–113.

    Article  PubMed  CAS  Google Scholar 

  37. Dinarello CA. Interleukin-1 and its biologically related cytokines. Adv Immunol. 1989; 44: 153–205.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson SE, He YG, Lloyd SA. EGF, EGF receptor, basic FGF, TGF beta-1, and IL-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts. Invest Ophthalmol Vis Sci. 1992; 33: 1756–1765.

    PubMed  CAS  Google Scholar 

  39. Wilson SE, Schultz GS, Chegini N, Weng J, He Y. Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea. Exp Eye Res. 1994; 59: 63–70.

    Article  PubMed  CAS  Google Scholar 

  40. Schmidt JA, Tocci MJ. Interleukin-I. In: Sporn MD, Roberts AB, eds. Peptide Growth Factors and Their Receptors. New York: Springer-Verlag; 1991: 473–521.

    Chapter  Google Scholar 

  41. Girard MT, Matsubara M, Fini ML. Transforming growth factor beta and interleukin-I modulate metalloproteinase expression by corneal stromal cells. Invest Ophthalmol Vis Sci. 1991; 32: 2441–2454.

    PubMed  CAS  Google Scholar 

  42. Dinarello CA. Interleukin-I and interleukin-I antagonism. Blood. 1991; 77: 1627–1652.

    PubMed  CAS  Google Scholar 

  43. Hykin PG, Bron AJ. Age-related morphological changes in lid margin and meibomian gland anatomy. Cornea. 1992; 11: 334–342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barton, K., Nava, A., Monroy, D.C., Pflugfelder, S.C. (1998). Cytokines and Tear Function in Ocular Surface Disease. In: Sullivan, D.A., Dartt, D.A., Meneray, M.A. (eds) Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Advances in Experimental Medicine and Biology, vol 438. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5359-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5359-5_64

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7445-9

  • Online ISBN: 978-1-4615-5359-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics