Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 311))

Abstract

K+ channel opening causing membrane hyperpolarization in vascular smooth muscle and thereby vasodilatation, cannot be rated as the ‘newly discovered’ action principle of certain pharmacological substances but as an ubiquitous physiological mechanism for the relaxation in smooth muscle. Acidification of the serum-pH-value is such an effector influence initiating vasodilatation. Drugs such as pinacidil, nicorandil, minoxidil sulphate and cromakalim effect vasodilatation by membrane hyperpolarization of the vascular smooth muscle cells as well, which in some tissues raises the membrane potential to a value close to the K+ equilibrium potential [36]. Although the number of K+ channels observed is steadily but rapidly increasing, they can still be classified. They are usually subdivided according to their mode of activation. Some are activated strictly voltage-dependently, others by a variation in the intracellular Ca2+ concentration, and some by the internal concentration of ATP, Na+, cyclic nucleotides etc. The heterogeneous group of K+ channel openers may be a potential therapy for hypertension, asthma, peripheral vascular disease, and diseases of the heart and nervous system. The central starting point of their physiological mode of action is the hyperpolarization of the smooth muscle cells which leads to relaxation by closing T- and/or L-type Ca2+ channels without, in the classical sense, the participation of cAMP or cGMP [34]. We would like to discuss this problem from a physiological point of view and venture a wider definition of the term ’K+ channel opener’. This seems to be justified by the fact that cyclic nucleotides also elicit a membrane hyperpolarization in the vascular smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aprigliano, O., and Hermsmeyer, K., 1976, In vitro denervation of the portal vein and caudal artery of the rat, J. Pharmacol Exp. Ther. 198:568–577.

    PubMed  CAS  Google Scholar 

  2. Bolton, T. B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol Rev. 59:606–718.

    PubMed  CAS  Google Scholar 

  3. Braquet, P., Guinot, P., and Tarrade, T., 1988, Cicletanine: biology, pharmacology and clinical sciences, Drugs Exp. Clin. Res. 14:71–230.

    Google Scholar 

  4. Calder, J. A., Schachter, M., and Sever, P. S., 1991, Acute relaxant effect of cicletanine in human subcutaneous resistance arteries, Blood Vessels 28:279.

    Google Scholar 

  5. Fidone, S., and González, C., 1982, Catecholamine synthesis in rabbit carotid body in vitro, J. Physiol. (Lond.) 333:69–79.

    CAS  Google Scholar 

  6. Fidone, S., González, C., and Yoshizaki, K., 1982, Effects of hypoxia on catecholamine synthesis in rabbit carotid body in vitro, J. Physiol. (Lond.) 333:81–91.

    CAS  Google Scholar 

  7. Fredj, G., 1988, Clinical pharmacokinetics of cicletanine hydrochloride, Drugs Exp. Clin. Res. 14:181–188.

    PubMed  CAS  Google Scholar 

  8. Ganitkevich, V.Ya., and Isenberg, G., 1990, Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery, J. Physiol. (Lond.) 426:19–42.

    Google Scholar 

  9. Grote, J., Siegel, G., Zimmer, K., and Adler, A., 1988, The influence of oxygen tension on membrane potential and tone of canine carotid artery smooth muscle, Adv. Exp. Med. Biol. 222:481–487.

    Article  PubMed  CAS  Google Scholar 

  10. Haeusler, G., de Peyer, J.-E., and Schultz, G., 1987, Vascular effects of α1- and α2-adrenoceptor agonists in vitro and in hypertensive rats, J. Cardiovasc. Pharmacol. 10 [Suppl. 4]: 15–18.

    Google Scholar 

  11. Hashimoto, T., Hirata, M., Itoh, T., Kanmura, Y., and Kuriyama, H., 1986, Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery, J. Physiol. (Lond.) 370:605–618.

    CAS  Google Scholar 

  12. Hennsmeyer, K., 1979, High shortening velocity of isolated single arterial muscle cells, Experientia 35:1599–1602.

    Article  Google Scholar 

  13. Kajiwara, M., Droogmans, G., and Casteels, R., 1984, Effects of 2-nicotinamidoethylnitrate (nicorandil) on excitation-contraction coupling in the smooth muscle cells of rabbit ear artery, J. Pharmacol. Exp. Ther. 230:462–468.

    PubMed  CAS  Google Scholar 

  14. Kauser, K., Clark, J. E., Masters, B. S., Ortiz de Montellano, P. R., Ma, Y.-H., Harder, D. R., and Roman, R. J., 1991, Inhibitors of cytochrome P-450 attenuate the myogenic response of dog renal arcuate arteries, Circ. Res. 68:1154-1163.

    Article  PubMed  CAS  Google Scholar 

  15. Loirand, G., Pacaud, P., Mironneau, C., and Mironneau, J., 1986, Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture, Pflügers Arch. 407:566–568.

    Article  PubMed  CAS  Google Scholar 

  16. Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone, Am. J. Physiol. 259:C3–C18.

    PubMed  CAS  Google Scholar 

  17. Northover, B. J., 1980, The membrane potential of vascular endothelial cells, Adv. Microcirc. 9:135–160.

    CAS  Google Scholar 

  18. Rüegg, J. C, 1986, “Calcium in muscle activation”, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo.

    Book  Google Scholar 

  19. Sadoshima, J.-I., Akaike, N., Kanaide, H., and Nakamura, M., 1988, Cyclic AMP modulates Ca-activated K channel in cultured smooth muscle cells of rat aortas, Am. J. Physiol. 255: H754–H759.

    PubMed  CAS  Google Scholar 

  20. Shaw, K., Montagne, W., and Pallot, D. J., 1990, Biochemical studies on the release of catecholamines from the rat carotid body in vitro, in: “Arterial Chemoreception”, C. Eyzaguirre, S. J. Fidone, R. S. Fitzgerald, S. Lahiri, D. M. McDonald, eds., Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo Hong Kong, pp 87–91.

    Chapter  Google Scholar 

  21. Siegel, G., 1986, Membranphysiologische Grundlagen der peripheren Gefäßregulation, Physiol., akt. 1:31–52.

    Google Scholar 

  22. Siegel, G., 1991, Garlic and vasoregulation, Cardiology in Practice [Suppl.], p 7.

    Google Scholar 

  23. Siegel, G., Carl, A., Adler, A., and Stock, G., 1989, Effect of the prostacyclin analogue iloprost on K+ permeability in the smooth muscle cells of the canine carotid artery, Eicosanoids 2:213–222.

    PubMed  CAS  Google Scholar 

  24. Siegel, G., Emden, J., Schnalke, F., Walter, A., Rückborn, K., and Wagner, K. G., 1991, Wirkungen von Knoblauch auf die Gefäß regulation, Med. Welt. 7a: 32–34.

    Google Scholar 

  25. Siegel, G., Grote, J., Schnalke, F., and Zimmer, K., 1989, The significance of the endothelium for hypoxic vasodilatation, Z. Kardiol. 78 [Suppl. 6]: 124–131.

    PubMed  Google Scholar 

  26. Siegel, G., Jäger, R., Nolte, J., Bertsche, O., Roedel, H., and Schröter, R., 1974, Ionic concentrations and membrane potential in cerebral and extracerebral arteries, in: “Pathology of Cerebral Microcirculation”, J. Cervós-Navarro, ed., Walter de Gruyter, Berlin New York, pp 96–120.

    Google Scholar 

  27. Siegel, G., Kämpe, Ch., and Ebeling, B. J., 1981, pH-dependent myogenic control in cerebral vascular smooth muscle, in: “Cerebral Microcirculation and Metabolism”, J. Cervós-Navarro, E. Fritschka, eds., Raven Press, New York, pp 213–226.

    Google Scholar 

  28. Siegel, G., Mironneau, J., Schnalke, F., Schröder, G., Schulz, B.-G., and Grote, J., 1990, Vasodilatation evoked by K+ channel opening, Prog. Clin. Biol. Res. 327:299–306.

    PubMed  CAS  Google Scholar 

  29. Siegel, G., Roedel, H., Nolte, J., Hofer, H. W., and Bertsche, O., 1976, Ionic composition and ion exchange in vascular smooth muscle, in: “Physiology of Smooth Muscle”, E. Bülbring, M. F. Shuba, eds., Raven Press, New York, pp 19–39.

    Google Scholar 

  30. Siegel, G., Stock, G., Schnalke, F., and Litza, B., 1987, Electrical and mechanical effects of prostacyclin in the canine carotid artery, in: “Prostacyclin and Its Stable Analogue Iloprost”, R. J. Gryglewski, G. Stock, eds., Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, pp 143–149.

    Chapter  Google Scholar 

  31. Siegel, G., Walter, A., Bostanjoglo, M., Jans, A. W. H., Kinne, R., Piculell, L., and Lindman, B., 1989, Ion transport and cation-polyanion interactions in vascular biomembranes, J. Membrane Sci. 41:353–375.

    Article  CAS  Google Scholar 

  32. Siegel, G., Wenzel, K., Schnalke, F., Mironneau, J., Schultz, G., Schröder, G., Schillinger, E., Grauhan, O., and Hetzer, R., 1990, Prostacyclin analogues as K+ channel openers, Clin. Pharmacol. 7:72–96.

    CAS  Google Scholar 

  33. Sperelakis, N., and Ohya, Y., 1990, Cyclic nucleotide regulation of Ca2+ slow channels and neurotransmitter release in vascular muscle, Prog. Clin. Biol. Res. 327:277–298.

    PubMed  CAS  Google Scholar 

  34. Weston, A. H., 1990, The pharmacology of smooth muscle potassium channels, Clin. Pharmacol. 7:1–18.

    CAS  Google Scholar 

  35. Weston, A. H., 1990, in: “Cicletanine and K+ Channel Opening”, Institut Henri Beaufour, Le Plessis-Robinson, France.

    Google Scholar 

  36. Weston, A. H., and Abbott, A., 1987, New class of antihypertensive acts by opening K+ channels, Trends Pharmacol. Sci. 8:283–284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siegel, G., Emden, J., Wenzel, K., Mironneau, J., Stock, G. (1992). Potassium Channel Activation in Vascular Smooth Muscle. In: Frank, G.B., Bianchi, C.P., ter Keurs, H.E.D.J. (eds) Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle. Advances in Experimental Medicine and Biology, vol 311. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3362-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3362-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6483-2

  • Online ISBN: 978-1-4615-3362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics