Skip to main content

Research in Agricultural and Urban Areas in Galapagos: A Biological Perspective

  • Chapter
  • First Online:
Science and Conservation in the Galapagos Islands

Part of the book series: Social and Ecological Interactions in the Galapagos Islands ((SESGI,volume 1))

Abstract

Agricultural and urban areas in the Galapagos Islands represent only about 3 % of the terrestrial environments, but their relevance for the conservation of the islands is unquestionable, since they are the epicenter of human activities that affect natural ecosystems. The different human activities carried out in these areas have created a matrix of environmental changes that need to be understood to improve the management of protected areas in Galapagos and elsewhere. In this chapter, some preliminary data from my current study in San Cristobal are examined to evaluate the effects of land use and climate change on nutrient dynamics, plant productivity, and diversity of animal communities, focusing on soil macroinvertebrates and terrestrial birds. In August 2011 and January 2012, soil and leaf samples were collected from 14 1 m2 plots randomly selected in four sites that differ in their land use patterns: urban, organic agriculture, pasture and guava, and restoration with native plant species. These samples were analyzed to assess their nitrogen and carbon contents. In addition, the percentage of vegetation cover was estimated as a proxy for primary productivity and the diversity of soil macroinvertebrates in the plots. These data were complemented with bird censuses at three observation points in each site. Significant differences were found in all but one of the studied ecological variables among sites. Although preliminary, these results suggest that land use patterns have considerable effects on the structure and function of terrestrial ecosystems in the Galapagos. There is some evidence that pasture, in combination with guava, affect nutrient availability and that, at least in the rainy season, vegetation cover and macroinvertebrate diversity are partially and negatively related to the C/N ratio in soil. To my knowledge, this is the first study to analyze the effects of land use and climate on nutrient dynamics and community diversity in agricultural and urban systems in the Galapagos. Evidently, more data and analyses are needed to better understand the direction and extent of the impact of land use changes on island ecosystems. Similar analyses need to be carried out in protected areas with native vegetation at different altitudes and ecosystems, to be used as control sites. Further analyses should also include chrono-sequences of the studied variables in disturbed and restored areas of different ages, to have an insight into ecosystems’ resilience and the impact of current climate change. These preliminary findings and future research ideas may trigger more research on the impact of human activities on terrestrial ecosystems in the Galapagos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abott I, Abbot LK, Grant PR (1977) Comparative ecology of Galapagos ground finches (Geospiza Gould): evaluation of the importance of floristic diversity and interspecific competition. Ecol Monogr 47:151–184

    Article  Google Scholar 

  • Alvarez-Sánchez J (2001) Descomposición y ciclos de nutrientes en ecosistemas terrestres de México. Acta Zoológ Mexic 1:11–27

    Google Scholar 

  • Aronson EL, McNulty SG (2009) Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agr Forest Meteorol 149:1791–1799

    Article  Google Scholar 

  • Asner GP, Townsend AR, Bustamante MM, Nardoto GB, Olander LP (2004) Pasture degradation in the central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Glob Chang Biol 10:844–862

    Article  Google Scholar 

  • Bauer IE, Apps MJ, Bhatti JS, Lal R (2006) Climate change and terrestrial ecosystem management: knowledge gaps and research needs. In: Bhatti JS, Lal R, Apps MJ, Price MA (eds) Climate change and managed ecosystems. CRC Press, Boca Raton

    Google Scholar 

  • Caujapé-Castells J, Tye A, Crawford DJ, Santos-Guerra A, Sakai A, Beaver K, Lobin W, VincentFlorens FB, Moura M, Jardim R, Gómes I, Kueffer C (2010) Conservation of oceanic island floras: present and future global challenges. Perspect Plant Ecol Evol Systemat 12:107–129

    Article  Google Scholar 

  • ECOLAP, MAE (2007) Guía del Patrimonio de Áreas Naturales Protegidas del Ecuador. Ecofund, FAN, DarwinNet, IGM, Quito

    Google Scholar 

  • Galloway JN, Aber JD, Willem Erisman J, Seitzinger SP, Howarth RW, Cowling EB, Cosby J (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Hollister RD, Webbert PJ, Nelson FE, Tweedie CE (2006) Soil thaw and temperature response to air warming varies by plant community: results from an open-top chamber experiment in Northern Alaska. Artic Antarct Alpine Res 38:206–215

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Bruce J, Lee H, Callender BA, Haites E, Harris N, Maskell K (eds) (1995). Climate change 1995: the science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • INEC (2010) Resultados censo de población 2010. http://www.inec.gob.ec (accessed 14 June 2012).

  • Itow S (2003) Zonation pattern, succession process and invasion by aliens in species-poor insular vegetation of the Galapagos Islands. Glob Environ Res 7:39–57

    Google Scholar 

  • Article  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Martino D (2001) Buffer zones around protected areas: a brief literature review. Electron Green J. 1:15. http://www.escholarship.org/uc/item/02n4v17n (accessed 11 Oct 2010).

  • Ordoñez JC (2010) Environmental filtering vs. natural variation and plant strategies: key components of plant trait modulation by nutrient supply. Thesis 2010–01 of the Institute of Ecological Science, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Parque Nacional Galapagos (2009) Galapagos, cincuenta años de ciencia y conservación. De Roy T (ed) Imprenta Mariscal, Quito. http://www.Galapagospark.org/nophprg.php?page=ciencia_investigacion_proyectos.

  • Pellens R, Garay I (1999) Edaphic macroarthropod communities in fast-growing plantations of Eucalyptus grandis Hill ex Maid (Myrtaceae) and Acacia mangium Wild (Leguminosae) in Brazil. Eur J Soil Biol 35:77–89

    Article  Google Scholar 

  • Prins H, Wind J (1993) Research for nature conservation in south-east Asia. Biol Conserv 63:43–46

    Article  Google Scholar 

  • Robinson G, del Pino EM (1985) El Niño en las islas Galapagos, el evento de 1982–1983. Fundación Charles Darwin, Quito

    Google Scholar 

  • SEST 840080 meteorological station www.tutiempo.net/clima/San_Cristóbal_Galapagos/08-2011/840080.htm (accessed 23 Apr 2012)

  • Schlesinger WH (1991) Biogeochemistry, an analysis of global change. Academic Press, New York

    Google Scholar 

  • Smith RL, Smith TH (2000) Elements of ecology, 4th edn. Addison Wesley Longman, San Francisco

    Google Scholar 

  • Trueman M, d’Ozouville N (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res 67:26–37

    Google Scholar 

  • Van Arendonk JCM, Niemann GJ, Boon JJ, Lambers H (1997) Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image-processing analysis and pyrolysis mass spectrometry. Plant Cell Environ 20:881–897

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from GAIAS—Universidad San Francisco de Quito. A research permit (PC-30-11) was granted by the Galapagos National Park that allowed this research to be conducted. I deeply acknowledge Isabel Villarruel for her outstanding assistance in the fieldwork and data analyses; Pablo Yépez for his support in all the stages of the study; Aaron Moody for his valuable comments on this manuscript; and Carlos Mena and Steve Walsh of the Galapagos Science Center (USFQ/UNC) for their valuable support during the fieldwork and for inviting me to participate in this book. Geovanny Sarigu from Hacienda La Tranquila and Nicolás Balón and Edgar Román from Hacienda El Cafetal kindly allowed me to carry out the field research in those areas and constantly supported our fieldwork. My special thanks to Sofía Tacle, Leandro Vaca, Courtney Butnor, Cecibel Narváez, María Angélica Moreano, Máximo and Marlene Ochoa, and all the personnel from GAIAS and the Galapagos Science Center for their support in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella de la Torre .

Editor information

Editors and Affiliations

Appendix A. Appendix 1. List of bird species recorded in each study site

Appendix A. Appendix 1. List of bird species recorded in each study site

Scientific name

Urban

Organic agriculture

Pasture and guava

Restoration

Crotophaga ani

X

X

X

X

Nesomimus melanotis

X

X

X

X

Dendroica petechia

X

X

X

X

Certhidea olivacea

 

X

X

X

Geospiza fortis

X

X

X

X

Geospiza fuliginosa

X

X

X

X

Platyspiza crassirostris

 

X

X

X

Camarhynchus pallidus

 

X

X

X

Camarhynchus parvulus

 

X

 

X

Myiarchus magnirostris

X

   

Bubulcus ibis

  

X

X

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de la Torre, S. (2013). Research in Agricultural and Urban Areas in Galapagos: A Biological Perspective. In: Walsh, S., Mena, C. (eds) Science and Conservation in the Galapagos Islands. Social and Ecological Interactions in the Galapagos Islands, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5794-7_11

Download citation

Publish with us

Policies and ethics