Skip to main content

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 3))

Abstract

Accurate assessment of light distributions in the brain is vital for both diagnostic and therapeutic applications. This, in turn, requires knowledge of the optical properties of brain tissues. The optical properties of a variety of mammalian brain tissues are summarized in this review. Both ex vivo and in vivo measurement techniques are reviewed as are solutions to the radiation transport equation which are required for calculating light distributions in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishimaru A (1978) Wave propagation and scattering in random media, Ch. 7 and 9. Academic, New York

    Google Scholar 

  2. Wilson BC, Patterson MS (1986) The physics of photodynamic therapy. Phys Med Biol 31:327–360

    Article  Google Scholar 

  3. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    Article  ADS  Google Scholar 

  4. Chandrasekhar S (1950) Radiative transfer. Oxford University Press, London

    MATH  Google Scholar 

  5. Rybicki GB (1971) The searchlight problem with isotropic scattering. J Quant Spectrosc Radiat Transfer 11:827–849

    Article  ADS  Google Scholar 

  6. Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Wiley, New York, pp 103–144

    Google Scholar 

  7. van de Hulst HC (1980) Multiple light scattering tables, formulas and applications. Academic, New York

    Google Scholar 

  8. Wang LH, Jacques SL, Zheng LQ (1995) MCML—Monte Carlo modeling of light transport in multilayered tissues. Comput Methods Programs Biomed 47:131–146

    Article  Google Scholar 

  9. Wilson BC, Adam G (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys 10:824–830

    Article  Google Scholar 

  10. Patterson MS, Wilson BC, Wyman DR (1991) The propagation of optical radiation in tissue. 1. Models of radiation transport and their application. Lasers Med Sci 6:155–168

    Article  Google Scholar 

  11. Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  12. Kubelka P (1948) New contributions to the optics of intensely light scattering materials. J Opt Soc Am 38:448–457

    Article  MathSciNet  ADS  Google Scholar 

  13. Prahl SA, van Gemert MJC, Welch AJ (1993) Determining the optical properties of turbid media by using the adding-doubling method. Appl Opt 32:559–568

    Article  ADS  Google Scholar 

  14. Pickering JW, Prahl SA, van Wieringen N, Beek JF, Sterenborg HJ, van Gemert MJC (1993) Double-integrating-sphere system for measuring the optical properties of tissue. Appl Opt 32:339–410

    Article  Google Scholar 

  15. Pickering JW, Bosman S, Posthumus P, Blokland P, Beek JF, van Gemert MJC (1993) Changes in the optical properties (at 632.8 nm) of slowly heated myocardium. Appl Opt 32:367–371

    Article  ADS  Google Scholar 

  16. Wilson BC (1995) Measurement of tissue optical properties: methods and theory. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp 233–274

    Google Scholar 

  17. Cheong W, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  ADS  Google Scholar 

  18. Wilson BC, Patterson MS, Flock ST (1987) Indirect versus direct techniques for the measurement of the optical properties of tissues. Photochem Photobiol 46:929–935

    Article  Google Scholar 

  19. Patterson MS, Wilson BC, Wyman DR (1991) The propagation of optical radiation in tissue. 2: optical properties of tissues and resulting fluence distributions. Lasers Med Sci 6:379–390

    Article  Google Scholar 

  20. Flock ST, Wilson BC, Patterson MS (1987) Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm. Med Phys 14:835–841

    Article  Google Scholar 

  21. Key H, Davies ER, Jackson PC, Wells PNT (1991) Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths. Phys Med Biol 36:579–590

    Article  Google Scholar 

  22. Firbank M, Hiraoka M, Essenpreis M, Delpy DT (1993) Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys Med Biol 38:503–510

    Article  Google Scholar 

  23. Ghosh N, Mohanty SK, Majumder SK, Gupta PK (2001) Measurement of optical transport properties of normal and malignant human breast tissue. Appl Opt 40:176–184

    Article  ADS  Google Scholar 

  24. Popp AK, Valentine MT, Kaplan PD, Weitz DA (2003) Microscopic origin of light scattering in tissue. Appl Opt 42:2871–2880

    Article  ADS  Google Scholar 

  25. van de Hulst HC (1980) Light scattering by small particles. Dover, New York

    Google Scholar 

  26. Cheong W (1995) Appendix to chapter 8: summary of optical properties. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp 275–303

    Google Scholar 

  27. Wilson BC, Jeeves WP, Lowe DM (1985) In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 42:153–162

    Article  Google Scholar 

  28. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selective native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47:2059–2073

    Article  Google Scholar 

  29. Beek JF, Blokland P, Posthumus P, Aalders M, Pickering JW, Sterenborg HJ, van Gemert MJ (1997) In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm. Phys Med Biol, 42:2255–2261

    Google Scholar 

  30. Gebhart SC, Lin WC, Mahadevan-Jansen A (2006) In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys Med Biol 51:2011–2027

    Article  Google Scholar 

  31. Doiron DR, Svaasand LO, Profio AE (1983) Light dosimetry in tissue applications to photoradiation therapy. In: Kessel D, Dougherty TJ (eds) Porphyrin photosensitization. Plenum Press, New York, pp 63–75

    Chapter  Google Scholar 

  32. Doiron DR, Svaasand LO, Profio AE (1982) Wavelength and dosimetry considerations in photoradiation therapy (PRT). In: Berns M (ed) Proc. SPIE 357, lasers in surgery and medicine Bellingham, WA

    Google Scholar 

  33. Muller PJ, Wilson BC (1986) An update of the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo. Phys Med Biol 31:1295–1297

    Article  Google Scholar 

  34. Wilson BC, Muller PJ, Yanche JC (1986) Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumors. Phys Med Biol 31:125–133

    Article  Google Scholar 

  35. Johns M, Giller CA, German DC, Liu H (2005) Determination of reduced scattering coefficient of biological tissue from a needle-like probe. Opt Express 13:4828–4842

    Article  ADS  Google Scholar 

  36. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2006) Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. Proc SPIE 6163:616310

    Article  Google Scholar 

  37. Chen Q, Chopp M, Madigan L, Dereski MO, Hetzel FW (1996) Damage threshold of normal rat brain in photodynamic therapy. Photochem Photobiol 64:163–167

    Article  Google Scholar 

  38. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C (1999) In vivo local determination of tissue optical properties: applications to human brain. Appl Opt 38:4939–4950

    Article  ADS  Google Scholar 

  39. Kim A, Roy M, Dadani F, Wilson BC (2010) A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Opt Express 18:5580–5594

    Article  ADS  Google Scholar 

  40. Choi J, Wolf M, Toronov V, Wolf U, Polzonetti C, Hueber D, Safonova LP, Gupta R, Michalos A, Mantulin W, Gratton E (2004) Nonivasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J Biomed Opt 9:221–229

    Article  Google Scholar 

  41. Comelli D, Bassi A, Pifferi A, Taroni P, Torricelli A, Cubeddu R, Martelli F, Zaccanti G (2007) In vivo time-resolved spectroscopy of the human forehead. Appl Opt 46:1717–1725

    Article  ADS  Google Scholar 

  42. Barnett AH, Culver JP, Sorensen AG, Dale A, Boas DA (2003) Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging. Appl Opt 42:3095–3108

    Article  ADS  Google Scholar 

  43. Zhao J, Ding HS, Hou XL, Zhou CL, Chance B (2005) In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy. J Biomed Opt 10:024028-1

    Google Scholar 

  44. van der Zee P, Essenpreis M, Delpy DT (1993) Optical properties of brain tissue. In: Alfano RR, Chance B (eds) Photon migration and imaging in random media and tissues, Proc. SPIE, 1888. Bellingham, WA p 454–465

    Google Scholar 

  45. Deghani H, Delpy DT (2000) Near-infrared spectrometer of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue. Appl Opt 39:4721–4729

    Article  ADS  Google Scholar 

  46. Kienle A, Patterson MS, Dognitz N, Bays R, Wagnieres G, van den Bergh H (1998) Nonivasive determination of the optical properties of two-layer media. Appl Opt 37:779–791

    Article  ADS  Google Scholar 

  47. Martelli F, Sassaroli A, Del Bianco S, Zaccanti G (2007) Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model. Phys Med Biol 52:2827–2843

    Article  Google Scholar 

  48. Kim A, Khurana M, Moriyama Y, Wilson BC (2010) Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. J Biomed Opt 15:0670061-12

    Google Scholar 

  49. Karagiannes JL, Zhang Z, Grossweiner B, Grossweiner LI (1989) Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms. Appl Opt 28:2311–2317

    Article  ADS  Google Scholar 

  50. Svaasand LO, Ellingsen R (1983) Optical properties of human brain. Photochem Photobiol 38:293–299

    Article  Google Scholar 

  51. Sterenborg HJCM, van Gemert MJC, Kamphorst W, Wolbers JG, Hogervorst W (1989) The spectral dependence of the optical properties of the human brain. Lasers Med Sci 4:221–227

    Article  Google Scholar 

  52. Svaasand LO, Ellingsen R (1985) Optical penetration in human intracranial tumors. Photochem Photobiol 41:73–76

    Article  Google Scholar 

  53. Preuss LE, Bolin FP, Cain BW (1982) Tissue as a medium for laser light transport—implications for photoradiation therapy. In: Berns M (ed) Proc. SPIE 357, lasers in surgery and medicine. Bellingham, WA p 77–84

    Google Scholar 

  54. Yavari N, Dam JS, Antonsson J, Wårdell K, Andersson-Engels S (2005) In vitro measurements of optical properties of porcine brain using a novel compact device. Med Biol Eng Comput 43:658–666

    Article  Google Scholar 

  55. Abdo A, Sahin M (2007) NIR light penetration in the rat peripheral nerve and brain cortex. Conf. Proc. IEEE Eng. Med. Biol. Soc. Washington, DC p 1723–1725

    Google Scholar 

  56. Ding H, Nguyen F, Boppart SA, Popescu G (2009) Optical properties of tissues quantified by Fourier-transform light scattering. Opt Lett 34:1372–1374

    Article  ADS  Google Scholar 

  57. Matcher SJ, Cope M, Delpy DT (1997) In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy. Appl Opt 36:386–396

    Article  ADS  Google Scholar 

  58. Ijichi S, Kusaka T, Isobe K, Okubo K, Kawada K, Namba M, Okada H, Nishida T, Imai T, Itoh S (2005) Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy. Pediatr Res 58:568–573

    Article  Google Scholar 

  59. Fantini S, Hueber D, Franceschini MA, Gratton E, Rosenfeld W, Stubblefield PG, Maulik D, Stankovic MR (1999) Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol 44:1543–1563

    Article  Google Scholar 

  60. Sassaroli A, Martelli F, Tanikawa Y, Tanaka K, Araki R, Onodera Y, Yamada Y (2000) Time-resolved measurements of in vivo optical properties of piglet brain. Opt Rev 7:420–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen J. Madsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madsen, S.J., Wilson, B.C. (2013). Optical Properties of Brain Tissue. In: Madsen, S. (eds) Optical Methods and Instrumentation in Brain Imaging and Therapy. Bioanalysis, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4978-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4978-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4977-5

  • Online ISBN: 978-1-4614-4978-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics