Skip to main content

Fusion Techniques for Scoliosis

  • Chapter
Spinal Fusion

Abstract

Arthrodesis of the spine by the posterior approach is the most common surgical treatment for many spinal deformities of childhood and adolescence. In this chapter, we discuss our technique for posterior spinal fusion for a variety of conditions, emphasizing surgical management of idiopathic scoliosis. Operative treatment of congenital scoliosis and neuromuscular scoliosis is also briefly discussed. Preoperative planning, intraoperative control of blood loss, and postoperative management are discussed as well as the important role of the anesthesiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hibbs RA. An operation for progressive spinal deformities. NY Med J 1911;93:1013.

    Google Scholar 

  2. Hibbs RA. A report of fifty-nine cases of scoliosis treated by the fusion operation. J Bone Joint Surg 1924;6:3.

    Google Scholar 

  3. American Orthopaedic Association Research Committee: End result study of the treatment of idiopathic scoliosis. J Bone Joint Surg 1941;23:963.

    Google Scholar 

  4. Moe JH. A critical analysis of methods of fusion for scoliosis. J Bone Joint Surg 1958;40A:529.

    Google Scholar 

  5. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg 1962;44A:491.

    Google Scholar 

  6. Nachemson A. A long-term followup study of non-treated scoliosis. Acta Orthop Scand 1968;3A:466.

    Google Scholar 

  7. Nilsonne U, Lundgren, KD. Long-term prognosis in idiopathic scoliosis. Acta Orthop Scand 1968;39:456.

    PubMed  CAS  Google Scholar 

  8. Weinstein SL, Zaval DC, Ponseti IV. Idiopathic scoliosis: long-term followup and prognosis in untreated patients. J Bone Joint Surg 1981;63A:702.

    Google Scholar 

  9. Lonstein JG, Carlson JM. Prognostication in idiopathic scoliosis. J Bone Joint Surg 1984;66A:1061.

    Google Scholar 

  10. Risser JC. The iliac apophysis: an invaluable sign in the management of scoliosis. Clin Orthop 1958;11:111.

    PubMed  CAS  Google Scholar 

  11. Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis: long-term followup. J Bone Joint Surg 1983;65A:447.

    Google Scholar 

  12. King HA, Moe JH, Bradford DS, Winter RB. Selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg 1983;65A:1302.

    Google Scholar 

  13. Bjerkreim I, Carlsen B, Korsell G. Preoperative Cotrel traction in idiopathic scoliosis. Acta Orthop Scand 1982;53:901.

    PubMed  CAS  Google Scholar 

  14. Nachemson A, Nordwall A. Effectiveness of preoperative Cotrel traction for correction of idiopathic scoliosis. J Bone Joint Surg 1977;59A:504.

    Google Scholar 

  15. Mandelbaum B, Tolo VT, McAfee P, Buresh P. Nutritional deficiencies after staged anterior and posterior spinal surgery. Orthop Trans 1986;10:32.

    Google Scholar 

  16. Harrington PR. Technical details in relation to the successful use of instrumentation in scoliosis. Orthop Clin North Am 1972;3:49.

    PubMed  CAS  Google Scholar 

  17. Cochran R, Irstam L, Nachemson A. Long-term anatomic and functional changes in patients with adolescent idiopathic scoliosis treated by Harrington rod fusion. Spine 1983;8:576.

    PubMed  CAS  Google Scholar 

  18. Kruskall MS, Umlas J. Acquired immunodeficiency syndrome and directed blood transfusions. Arch Surg 1988;123:23.

    PubMed  CAS  Google Scholar 

  19. McCarthy RE, Mertz JD, Lonstein JE, Kuslich SD. Air embolism in spinal surgery. Orthop Trans 1985;9:484.

    Google Scholar 

  20. Hall JE, Levin CF, Sudhir KH. Intraoperative awakening to monitor spinal cord function during Harrington instrumentation and spine fusion. J Bone Joint Surg 1978;60A:533.

    Google Scholar 

  21. Vauzelle L, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop 1973;93:173.

    PubMed  Google Scholar 

  22. Hoppenfield S, Gross AM, Andres C. The ankle clonus test. Orthop Trans 1985;9:118.

    Google Scholar 

  23. Bunch WH, Scarff TB, Trimble J. Current concepts review. Spinal cord monitoring. J Bone Joint Surg 1983;65A:707.

    Google Scholar 

  24. Kling TF, Pandit U, Hensinger RN, Phillips WA. Efficacy of heated/humidified inspired anesthetic gas in maintaining body temperature during scoliosis surgery. Orthop Trans 1986;10:29.

    Google Scholar 

  25. Relton JGS, Hall JE. An operation frame for spinal fusion. A new apparatus designed to reduce haemorrhage during operation. J Bone Joint Surg 1967;49B:327.

    Google Scholar 

  26. Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg 1940;112:138.

    PubMed  CAS  Google Scholar 

  27. Goldstein LA. Treatment of idiopathic scoliosis by Harrington instrumentation and fusion with fresh autogenous iliac bone grafts. J Bone Joint Surg 1969;51A:209.

    Google Scholar 

  28. Bunch WH, Chapman RG. Patient preferences in surgery for scoliosis. J Bone Joint Surg 1985;67A:794.

    Google Scholar 

  29. Dunn HK, Daniels AU, McBride GG. Intraoperative force measurements during correction of scoliosis. Spine 1982;7:448.

    PubMed  CAS  Google Scholar 

  30. MacEwen GO, Bunnell WP, Sriram K. Acute neurological complications in the treatment of scoliosis. J Bone Joint Surg 1975;57A:404.

    Google Scholar 

  31. Schultz A, Hirsch C. Mechanical analysis of Harrington rod correction of idiopathic scoliosis. J Bone Joint Surg 1973;55A:983.

    Google Scholar 

  32. Wenger DR, Carollo JJ, Wilkerson JA, Jr. Biomechanics of scoliosis correction by segmental spinal instrumentations. Spine 1982;7:260.

    PubMed  CAS  Google Scholar 

  33. Waugh TR. Intravital measurements during instrumental correction of idiopathic scoliosis. Acta Orthop Scand (Suppl) 1966;93:1.

    Google Scholar 

  34. Nachemson A, Elfstrom G. A force-indicating distractor for the Harrington rod procedure. J Bone Joint Surg 1969;51A:166.

    Google Scholar 

  35. Ashworth MA, Lowe PJ, Bryant JT. A force indicating spreader. A tool for teaching the Harrington technique. Spine 1982;7:80.

    PubMed  CAS  Google Scholar 

  36. Nachemson A, Elfstrom G. Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis. J Bone Joint Surg 1971;53A:445.

    Google Scholar 

  37. Cook SD, Barrack RL, Georgette FS, Whitecloud TS, II, Burke SW, Skinner HB, Renz EA. An analysis of failed Harrington rods. Spine 1985;10:313.

    PubMed  CAS  Google Scholar 

  38. Erwin WD, Dickson JH, Harrington PR. Clinical review of patients with broken Harrington rods. J Bone Joint Surg 1980;62A:1302.

    Google Scholar 

  39. Akeson J, Bobechko WP. Treatment of scoliosis by instrumentation with double upper hooks and posterior fusion. Orthop Trans 1986;10:35.

    Google Scholar 

  40. Grobler LJ, Moe JH, Winter RB, Bradford DS, Lonstein JE. Loss of lumbar lordosis following surgical correction of thoracolumbar deformity. Orthop Trans 1978;2:239.

    Google Scholar 

  41. Moe JH, Denis F. The iatrogenic loss of lumbar lordosis. Orthop Trans 1977;1:131.

    Google Scholar 

  42. Wasylenko M, Skinner SR, Perry J, Antonelli DJ. An analysis of posture and gait following spinal fusion with Harrington instrumentation. Spine 1983;8:840.

    PubMed  CAS  Google Scholar 

  43. Casey M, Asher M, Jacobs RR, Orrick J. The effect of Harrington rod contouring on lumbar lordosis. Orthop Trans 1985;9:125.

    Google Scholar 

  44. Nordwall A. Briefly noted: a new instrument: the Harrington rod director. Spine 1986;11:498.

    PubMed  CAS  Google Scholar 

  45. Keene JS, Drummond DS, Narechania RG. The Wisconsin compression system. Spine 1982;7:83–85.

    PubMed  CAS  Google Scholar 

  46. Armstrong GW, Connock SH. A transverse loading system applied to a modified Harrington instrumentation. Clin Orthop 1975;108:70.

    PubMed  Google Scholar 

  47. Gaines RW, McKinley LM, Leatherman KD. Effect of the Harrington compression system on the correction of the rib hump in spinal instrumentation for idiopathic scoliosis. Spine 1981;6:489.

    PubMed  CAS  Google Scholar 

  48. Herndon WA, Ellis RD, Hall JA, Millis MG. Correction with a transverse loading system in the operative management of scoliosis. Clin Orthop 1982;165:168.

    PubMed  Google Scholar 

  49. Ogilvie JW, Millar EA. Comparison of segmental spinal instrumentation devices in the correction of scoliosis. Spine 1983;8:416.

    PubMed  CAS  Google Scholar 

  50. Gaines RW, Leatherman KD. Benefits of the Harrington compression system in lumbar and thoracolumbar idiopathic scoliosis in adolescents and adults. Spine 1981;6:483.

    PubMed  CAS  Google Scholar 

  51. Luque ER. Segmental spinal instrumentation for the correction of scoliosis. Clin Orthop 1982;163:192.

    PubMed  Google Scholar 

  52. Luque ER, Cardoso A. Segmental correction of scoliosis with rigid internal fixation. Preliminary report. Orthop Trans 1977; 1:136.

    Google Scholar 

  53. Allen BL, Jr, Ferguson RL. The Galveston technique for L-rod instrumentation of the scoliotic spine. Spine 1982;7:276.

    PubMed  Google Scholar 

  54. Phillips WA, De Wald RL. A comparison of Luque segmental spinal instrumentation with Harrington rod instrumentation in the management of idiopathic scoliosis. Orthop Trans 1985;9:437.

    Google Scholar 

  55. Nasca RJ, Hollis JM, Lemons JE, Cool TA. Cyclic axial loading of spinal implants. Spine 1985;10:792.

    PubMed  CAS  Google Scholar 

  56. Wenger DR, Carollo JJ, Wilkerson JA, Jr. Laboratory testing of segmental spinal instrumentation versus traditional Harrington instrumentation for scoliosis treatment. Spine 1982;7:265.

    PubMed  CAS  Google Scholar 

  57. Winter RB. Thoracic lordoscoliosis in neurofibromatosis: treatment by a Harrington rod with sublaminar wiring. J Bone Joint Surg 1984;66A:1102.

    Google Scholar 

  58. Johnston CE, II, Ashman R, Sherman M. Mechanical consequences of rod contouring and residual scoliosis in sublaminar pelvis SSI. Orthop Trans 1986;10:5.

    Google Scholar 

  59. Zindrick M, Knight G, Bunch W, Miller M, Butler D, Azarkia, B. The depth of wire penetration of intrasegmental wire in the neural canal at insertion. Orthop Trans 1986;10:6.

    Google Scholar 

  60. Herring JA, Wenger DR. Segmental spinal instrumentation: a preliminary report of 40 consecutive cases. Spine 1982;7:285.

    PubMed  CAS  Google Scholar 

  61. Johnston CE, II, Happel LT, Norris R, Burke SW, King AG, Roberts, JM. Delayed paraplegia complicating sublaminar segmental spinal instrumentation. J Bone Joint Surg 1986;68A:556.

    Google Scholar 

  62. Thompson GH, Wilber RG, Shaffer JW, Scoles PV, Nash CJ, Jr. Segmental spinal instrumentation in idiopathic scoliosis. A preliminary report. Spine 1985;10:623.

    PubMed  CAS  Google Scholar 

  63. Wilber RG, Thompson GH, Shaffer JW, Brown RM, Nash CL, Jr. Postoperative neurologic deficits in segmental spinal instrumentation: a study utilizing spinal cord monitoring. J Bone Joint Surg 1984;66A:1178.

    Google Scholar 

  64. Bernard TN, Jr, Johnson CE, II, Roberts JM, Burke SW. Late complications due to wire breakage in segmental spinal instrumentation. Report of two cases. J Bone Joint Surg 1983;65A:1339.

    Google Scholar 

  65. Nicastro JF, Traina J, Lancaster M, Hartjen C. Sublaminar segmental wire fixation anatomic pathways during their removal. Orthop Trans 1984;8:172.

    Google Scholar 

  66. McCarthy RE. Experience with a locking collar for Luque rods. Orthop Trans 1986;10:7.

    Google Scholar 

  67. Auen BL, Jr, Ferguson RL. The Galveston technique of pelvic fixation with L-rod instrumentation of the spine. Spine 1984;9:388.

    Google Scholar 

  68. Moseley C, Mosca V, Lawton L, Koreska J. Improved stability in segmental instrumentation of neuromuscular scoliosis. Orthop Trans 1986;10:5.

    Google Scholar 

  69. Rossier AB, Cochran TP. The treatment of spinal fractures with Harrington compression rods and segmental sublaminar wiring. A dangerous combination. Spine 1984;9:796.

    PubMed  CAS  Google Scholar 

  70. Drummond D, Guadagni J, Keene JS, Breed A, Narechania R. Interspinous process segmental spinal instrumental. J Pediatr Orthop 1984;4:397.

    PubMed  CAS  Google Scholar 

  71. Guadagni J, Drummond D, Breed A. Improved postoperative course following modified segmental spinal instrumentation and posterior spinal fusion for idiopathic scoliosis. J Pediatr Orthop 1984;4:405.

    PubMed  CAS  Google Scholar 

  72. Mino DE, Stauffer ES, Davis PK, Hester J. Torsional loading of Harrington distraction rod instrumentation compared to segmental sublaminar and spinous process supplementation. Orthop Trans 1985;9:119.

    Google Scholar 

  73. Bridwill KH, Pruitt D, Capelli A, Schoenecker PL. Experience with 100 Cotrel-Dubousset instrumentations. Orthop Trans 1987;11:183.

    Google Scholar 

  74. Millis MB, Hall JE. Early experience with CD instrumentation in an American orthopaedic center. Orthop Trans 1987;11:50.

    Google Scholar 

  75. Shufflebarger HL, Clark RN. Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Orthop Trans 1987; 11:48.

    Google Scholar 

  76. Curran JW, Lawrence DN, Jaffe H, Kaplan JE, Zyla LD, Chamberlan M, Weinstein R, Lui K, Schonberger LB, Spira TJ, Alexander WJ, Swinger G, Ammann A, Solomon S, Auerbach D, Mildvan D, Stoneburner R, Jason JM, Haverkos MW, Evatt BL. Acquired immunodeficiency syndrome (AIDS) associated with transfusions. N Engl J Med 1984;310:69.

    PubMed  CAS  Google Scholar 

  77. Widmann FK. Untoward effects of blood transfusion. Postgrad Med 1981;69:40.

    PubMed  CAS  Google Scholar 

  78. Bradford DS. Techniques of surgery. In: Bradford DS, Lonstein JE, Moe JM, Ogilvie JW, Winter RB, eds. Moe’s Textbook of Scoliosis and Other Spinal Deformities. 2d Ed. Philadelphia: Saunders, 1980.

    Google Scholar 

  79. Knight PR, Lane GA, Hensinger RN, Bolles RS, Bjoraker DG. Catecholamine and renin-angiotensin response during hypotensive anesthesia induced by sodium nitroprusside or trimethaphan camsylate. Anesthesiology 1983;59:248.

    PubMed  CAS  Google Scholar 

  80. Low JM, Harvey JT, Cooper GM, Prendiville WJ. Plasma concentrations of catecholamines following adrenaline infiltration during gynaecological surgery. Br J Anaesth 1984;56:849.

    PubMed  CAS  Google Scholar 

  81. Sorrenti SJ, Cumming WJ, Miller D. Reaction of the human tibia to bone wax. Clin Orthop 1984;182:293.

    PubMed  Google Scholar 

  82. Moleno R, Dommisse GF. Spinal surgery: minimizing blood loss. J Bone Joint Surg 1975;57B:259.

    Google Scholar 

  83. McCarthy RE, Peek RD, Morrissy RT, Hough AJ. Allograft bone in spinal fusion for paralytic scoliosis. J Bone Joint Surg 1986;68A:370.

    Google Scholar 

  84. Bowen JR, Angus PD, Huxster RR, Mace Wan, DC. Posterior spinal fusion without blood in Jehovah’s Witness. Clin Orthop 1985;198:284.

    PubMed  Google Scholar 

  85. Winter RB, Swayze C. Severe neurofibromatosis kyphoscoliosis in a Jehovah’s Witness. Spine 1983;8:39.

    PubMed  CAS  Google Scholar 

  86. Wong KC, Webster LR, Coleman SS, Dunn HKL. Hemodilution and induced hypotension for insertion of a Harrington rod in a Jehovah’s Witness patient. Clin Orthop 1980;152:237.

    PubMed  Google Scholar 

  87. Cowell HR, Swickard JW. Autotransfusion in children’s orthopaedics. J Bone Joint Surg 1974;56A:908.

    Google Scholar 

  88. Flynn JC, Metzger CR, Csencsitz TA. Intraoperative auto-transfusion in spinal surgery. Spine 1982;7:432.

    PubMed  CAS  Google Scholar 

  89. Ernst T, Cook DR. Surgical technique is a major determinant of blood loss during Harrington rod instrumentation. Read at American Academy of Pediatrics, Anesthesiology Section, Las Vegas, Nevada, April 19, 1980.

    Google Scholar 

  90. DuToit Q, Relton J, Gillespie R. Acute hemodilution auto-transfusion in the surgical management of scoliosis. J Bone Joint Surg 1978;6.B:178.

    Google Scholar 

  91. Jacobs HK, Lieponis JV, Bunch WH, Barber MNB, Salem MR. The influence of halothane and nitroprusside on canine spinal cord hemodynamics. Spine 1982;7:35.

    PubMed  CAS  Google Scholar 

  92. Kling TF, Fergusson NV, Leach AB, Hensinger RN, Lane GA, Knight PR. The influence of induced hypotension and spine distraction on canine spinal cord blood flow. Spine 1985;10:878.

    PubMed  Google Scholar 

  93. Kling TF, Spargo PM, Hensinger RN, Knight PR. The effect of nitroglycerin-induced hypotension with and without spine distraction on canine spinal cord blood flow. Orthop Trans 1986;10(1):19.

    Google Scholar 

  94. Kling TF, Wilton N, Hensinger RN, Knight PR. The influence of trimethaphan (Arfonad) induced hypotension with and without spine distraction on canine spinal cord blood flow. Spine 1986;11:219.

    PubMed  Google Scholar 

  95. Grundy BL, Nash CL, Brown RH. Deliberate hypotension for spinal fusion: prospective randomized study with evoked potential monitoring. Can Anaesth Sco J 1982;29:452.

    CAS  Google Scholar 

  96. Malcolm-Smith NA, McMaster MJ. The use of induced hypotension to control bleeding during posterior fusion for scoliosis. J Bone Joint Surg 1983;65B:255.

    Google Scholar 

  97. McNeill TW, DeWald RL, Juo KN, Bennett EJ, Salem MR. Controlled hypotensive anesthesia in scoliosis surgery. J Bone Joint Surg 1974;56A:1167.

    Google Scholar 

  98. Patel NJ, Patel BS, Paskin S, Laufer S. Induced moderate hypotensive anesthesia for spinal fusion and Harrington rod instrumentation. J Bone Joint Surg 1985;67A:1384.

    Google Scholar 

  99. Knight PR, II, Lane GA, Nicholls MG, Tait AR, Nahrwold ML, Hensinger RN, Cohen PJ. Hormonal and hemodynamic changes induced by pentolinium and propranolol during surgical correction of scoliosis. Anesthesiology 1980;53:127.

    PubMed  CAS  Google Scholar 

  100. Bell GR, Gurd AR, Orlowski JP, Andrish JT. The syndrome of inappropriate antidiuretic-hormone secretion following spinal fusion. J Bone Joint Surg 1986;68A:720.

    Google Scholar 

  101. Munns SW, Morrissy RT, Colladay ES, McKenzie CH. Hyperalimentation for superior mesenteric artery (CAST) syndrome following correction of spinal deformity. J Bone Joint Surg 1984;66A:1175.

    Google Scholar 

  102. Transfeldt EE, Lonstein JE, Winter RB, Bradford D, Moe J, Mayfield J. Wound infections in reconstructive spinal surgery. Orthop Trans 1985;9:128.

    Google Scholar 

  103. Hoffinger SA, Renshaw TS, Murphy J. The compensatory curve in congenital scoliosis. Presented at 22nd Annual Meeting, Scoliosis Research Society, September 18, 1987.

    Google Scholar 

  104. Yngve DA, Burke SW, Price CT, Riddick MF. Sublaminar wiring. J Pediatr Orthop 1986;6:605.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Phillips, W.A., Hensinger, R.N. (1990). Fusion Techniques for Scoliosis. In: Cotler, J.M., Cotler, H.B. (eds) Spinal Fusion. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3272-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3272-8_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7944-0

  • Online ISBN: 978-1-4612-3272-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics