Skip to main content

Peritoneum, Peritoneal Healing, and Adhesion Formation

  • Chapter
Peritoneal Surgery

Abstract

Peritoneum is the most extensive serous membrane in the body. The surface area of the peritoneum is generally equal to that of the skin (Table 1.1). 1 It forms a closed sac in the male and an open sac in the female because the ends of the fallopian tubes are not covered by peritoneum. The peritoneum lines the walls of the abdomen (parietal peritoneum) and is reflected over the viscera (visceral peritoneum). It consists of two layers, a loose connective tissue and a mesothelium. The connective tissue is arranged into loose bundles that interlace in a plane parallel to the surface. There are numerous elastic fibers, especially in the deeper layer of the parietal peritoneum, and comparatively few connective tissue cells. The peritoneum serves to minimize friction, facilitating free movement between abdominal viscera, to resist or localize infection, and to store fat, especially in the greater omentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Esperanca JM, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg 1966; 1:162–169.

    Article  Google Scholar 

  2. Bloom W, Fawcett DW. A Textbook of Histology, 9th Ed. Philadelphia: Saunders, 1968:186–187.

    Google Scholar 

  3. Robbins SL. A Textbook of Histology, 3rd Ed. Philadelphia: Saunders, 1967:891–896.

    Google Scholar 

  4. Watters WB, Buck RC (1972) Scanning electron microscopy of mesothelial regeneration in the rat. Lab Invest 26:604–609.

    PubMed  CAS  Google Scholar 

  5. Pfeiffer CJ, Pfeiffer DC, Misra HP. Enteric serosal surface in the piglet. A scanning and transmission electron microscopic study of the mesothelium. J Submicrosc Cytol 1987; 19:237–246.

    PubMed  CAS  Google Scholar 

  6. Dobbie JW. New concepts in molecular biology and ultra-structural pathology of the peritoneum: their significance of peritoneal dialysis. Am J Kidney Dis 1990; 15:97–109.

    PubMed  CAS  Google Scholar 

  7. Berndt WO, Gosselin RE. Rubidium and creatinine transport across isolated mesentery. Biochem Pharmacol 1961; 8:359–366.

    Article  PubMed  CAS  Google Scholar 

  8. Gosselin RE, Berndt WO. Diffusional transport of solute through mesentery and peritoneum. J Theor Biol 1962; 3:487–495.

    Article  CAS  Google Scholar 

  9. Fukata H. Electron microscopic study on normal rat peritoneal mesothelium and its changes in absorption of par-ticulate iron dextran complex. Acta Pathol Jpn 1963; 13:309–325.

    PubMed  CAS  Google Scholar 

  10. Shear J, Harvey JD, Barry KG. Peritoneal sodium transport; enhancement by pharmacologic and physical agents. J Lab Clin Med 1966; 67:181–188.

    PubMed  CAS  Google Scholar 

  11. Cotran RS, Karnovsky JJ. Ultrastructural studies on the permeability of the mesothelium to horseradish peroxi-dase. J Cell Biol 1968; 37:123–137.

    Article  PubMed  CAS  Google Scholar 

  12. Baron MA. Structure of the intestinal peritoneum in man. Am J Anat 1941; 69:439–497.

    Article  Google Scholar 

  13. Atkinson M, Losowsky MS. Mechanism of ascites formation in chronic liver disease. Clin Sci 1962; 22:383–389.

    PubMed  CAS  Google Scholar 

  14. Leak LV, Rahil K. Permeability of the diaphragmatic mesothelium: the ultrastructural bases for “stomata.” Am J Anat 1978; 151:557–569.

    Article  PubMed  CAS  Google Scholar 

  15. Lill SR, Parsons RH, Buchac I. Permeability of the diaphragm and fluid rsorption from the peritoneal cavity in the rat. Gastroenterology 1979; 76:997–1002.

    PubMed  CAS  Google Scholar 

  16. MacCallum WG. On the mechanism of absorption of granular material from the peritoneum. Johns Hopkins Hosp Bull 1903; 14:105–112.

    Google Scholar 

  17. Allen L. The peritoneal stomata. Anat Rec 1936; 67:89–99.

    Article  Google Scholar 

  18. French JE, Florey HW, Morris B. The absorption of particles by the lymphatics of the diaphragm. J Exp Physiol 1960; 45:88–93.

    CAS  Google Scholar 

  19. Leak LV. The adhesion of peritoneal cells to the diaphragmatic mesothelium. Bibl Anat 1979; 17:115–124.

    PubMed  Google Scholar 

  20. Murphy MJ, Morris B. A study of the peritoneal surface of the diaphragm by steroscan electron microscopy. In: Grenoble FP (ed) Microscopie Electronique, Vol. 3. Paris, France: Société française de Microscopie électronique, 1970:587–592.

    Google Scholar 

  21. Tsilibury EC, Wissig SL. Absorption from the peritoneal cavity: SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 1977; 149:127–133.

    Article  Google Scholar 

  22. diZerega GS, Rodgers K. Peritoneal fluid. In: The Peritoneum. New York: Springer-Verlag, 1990:26–52.

    Google Scholar 

  23. Bercovici B, Gallily R. The cytology of the human peritoneal fluid. Acta Cytol 1978; 22:197–207.

    Google Scholar 

  24. McGowan L, Davis RH, Stein DB, et al. The cytology of the pelvic peritoneal cavity in normal women. Am J Clin Pathol 1968; 49:506–511.

    PubMed  CAS  Google Scholar 

  25. McGowan L, Davis RH. Peritoneal fluid cellular patterns in obstetrics and gynecology. Am J Clin Gynecol 1970; 106:979–995.

    CAS  Google Scholar 

  26. Diegelmann RF, Cohen IK, Kaplan AM. The role of macrophages in wound repair: a review. Plast Reconstr Surg 1981; 68:107–113.

    Article  PubMed  CAS  Google Scholar 

  27. ArRajab A, Dawidson I, Sentementes J, et al. Enhancement of peritoneal macrophages reduces postoperative peritoneal adhesion formation. J Surg Res 1995; 58:307–312.

    Article  PubMed  Google Scholar 

  28. Rodgers KE, diZerega GS. Modulation of peritoneal reep-ithelialization by postsurgical macrophages. J Surg Res 1992; 53:542–548.

    Article  PubMed  CAS  Google Scholar 

  29. Fukasawa M, Yanagihara D, Rodgers KE, diZerega GS. The mitogenic activity of peritoneal tissue repair cells: control by growth factors. J Surg Res 1989; 47:45–51.

    Article  PubMed  CAS  Google Scholar 

  30. Orita H, Campeau JD, Gale J, et al. Modulation of f ibro-blast proliferation and transformation by activated macrophages during postoperative peritoneal reepithelializa-tion. Am J Obstet Gynecol 1986; 155:905–911.

    PubMed  CAS  Google Scholar 

  31. Leibovich SJ, Ross R. A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol 1976; 84:501–514.

    PubMed  CAS  Google Scholar 

  32. diZerega GS. The peritoneum and its response to surgical injury. In: di Zerega GS, Malinak LR, Diamond MP, Linsky CB, eds. Treatment of Post Surgical Adhesions. Prog Clin Biol Res 1990; 358:1–11.

    Google Scholar 

  33. Itskovitz-Eldor J, Kol S, Lewit N, Sealey JE. Ovarian origin of plasma and peritoneal fluid prorenin in early pregnancy and in patients with ovarian hyperstimulation syndrome. J Clin Endocrinol Metab 1997; 82:461–464.

    Article  PubMed  CAS  Google Scholar 

  34. Chacho K, Chacho S, Andersen P, Scommegna A. Peritoneal fluid in patients with and without endometriosis: prostanoids and macrophages and their effect on the spermatozoa penetration assay. Am J Obstet Gynecol 1986; 154:1290–1297.

    PubMed  CAS  Google Scholar 

  35. DeLeon F, Vijayakumar R, Brown M, Rao C, Yussman M, Schultz G. Peritoneal fluid volume, estrogen, progesterone, prostaglandin, and epidermal growth factor concentrations in patients with and without endometriosis. Obstet Gynecol 1986; 68:189–193.

    PubMed  Google Scholar 

  36. Halme J. Release of tumor necrosis factor-alpha by human peritoneal macrophages in vivo and in vitro. Am J Obstet Gynecol 1989; 161:1718–1725.

    PubMed  CAS  Google Scholar 

  37. Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. Transforming growth factor-ß activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol 1994; 83:287–292.

    PubMed  CAS  Google Scholar 

  38. Fakih H, Bagget B, Holtz G, Tsang KY, Lee J, Williamson H. Interleukin-1: possible role in the infertility associated with endometriosis. Fertil Steril 1987; 47:213–217.

    PubMed  CAS  Google Scholar 

  39. Arici A, Tazuke SI, Attar E, Kilman HJ, Olive DL (1996) Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol Hum Reprod 2:40–45.

    Article  PubMed  CAS  Google Scholar 

  40. Oral EP, Arid A. Peritoneal growth factors and endometriosis. Semin Reprod Endocrinol 1996; 14:257–267.

    Article  PubMed  CAS  Google Scholar 

  41. Halme J, Becker S, Haskill S. Altered maturation and function of peritoneal macrophages: possible role in pathogen-esis of endometriosis. Am J Obstet Gynecol 1987; 136:783–789.

    Google Scholar 

  42. Werb Z. Phagocytic cells: chemotaxis and effector functions of macrophages and granulocytes. In: Daniel S, Stobo J, Wells V, eds. Basic and Clinical Immunology, Vol. 6. Norwalk: Appleton & Lange, 1987:96–113.

    Google Scholar 

  43. Hill JA, Faris H, Schiff I, Anderson D. Characterization of leukocyte subpopulations in the peritoneal fluid of women with endometriosis. Fertil Steril 1988; 50:216–222.

    PubMed  CAS  Google Scholar 

  44. Akoum A, Lemay A, McColl S, Turcot-Lemay L, Maheux R. Elevated concentration and biologic activity of mono-cyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis. Fertil Steril 1996; 66:17–23.

    PubMed  CAS  Google Scholar 

  45. Mori H, Swairi M, Nakagawa M, Itoh N, Wada K, Tamaya T. Peritoneal fluid interleukin-1 beta and tumor necrosis factor in patients with benign gynecologic disease. Am J Reprod Immunol 1991; 26:62–67.

    PubMed  CAS  Google Scholar 

  46. Liu J, Lian LJ, Wang YF, et al. The immunological study of patients with endometriosis. Contrib Gynecol Obstet 1987; 16:66–72.

    PubMed  CAS  Google Scholar 

  47. Badawy SZ, Cuenca V, Stitzel A, et al. The regulation of im-munoglobulin production by B cells in patients with endometriosis. Fertil Steril 1989; 51:770–773.

    PubMed  CAS  Google Scholar 

  48. Badawy SZ, Cuenca V, Kaufman L, et al. The regulation of immunoglobulin production by B cells in patients with endometriosis. Fertil Steril 1989; 51:770–773.

    PubMed  CAS  Google Scholar 

  49. Badawy SZ, Cuenca V, Marshall L, et al. Cellular components in peritoneal fluid in infertile patients with and without endometriosis. Fertil Steril 1984; 42:701–708.

    Google Scholar 

  50. Meek SC, Hodge DD, Musich JR. Autoimmunity in infertile patients with endometriosis. Am J Obstet Gynecol 1988; 158:1365–1373.

    PubMed  CAS  Google Scholar 

  51. Confino E, Harlow L, Gleicher N. Peritoneal fluid and serum autoantibody levels in patients with endometriosis. Fertil Steril 1990; 53:242–245.

    PubMed  CAS  Google Scholar 

  52. Garza D, Mathur S, Dowd MM, et al. Antigenic differences between the endometrium of women with and without endometriosis. J Reprod Med 1991; 36:177–182.

    PubMed  CAS  Google Scholar 

  53. Fernandez-Shaw S, Hicks BR, Judkin PL, et al. Anti-en-dometrial and anti-endothelial auto-antibodies in women with endometriosis. Hum Reprod (Oxf) 1993; 8:310–315.

    CAS  Google Scholar 

  54. Dorr PJ, Brommer EJP, Dooijewaard G, et al. Peritoneal fluid and plasma f ibrinolytic activity in women with pelvic inflammatory disease. Thromb Haemostasis 1992; 68:102–105.

    CAS  Google Scholar 

  55. Nissell H, Larsson B. Role of blood and fibrinogen in development of intraperitoneal adhesions in rats. Fertil Steril 1978; 30:470–473.

    Google Scholar 

  56. Larsson B. Prevention of postoperative formation and reformation of pelvic adhesions. In: Treutner KH, Schumpleck V, eds. Peritoneal Adhesions. Berlin: Springer, 1997.

    Google Scholar 

  57. Rosenberg L. Tronstad SE, Sponland G, et al. Results of electromicrosurgery in 78 women for correction of infertility. A two-center comparative study. Infertility 1982; 5:35–41.

    Google Scholar 

  58. Swolin K. Die einwirkung von grossen, intraperitoneal en dusen glukortikiod auf die bildung von postoperative ad-hesionen. Acta Obstet Gynecol Scand 1967; 46:204–209.

    Article  PubMed  CAS  Google Scholar 

  59. Querleu D, Vankeerberghen-Deffense F, Boutteville C. Traitement adjuvant des plasties tubaires. J Gynecol Ob-stet Biol Reprod 1989; 18:935–940.

    CAS  Google Scholar 

  60. Williams PL, Warwick R, Dyson M, Bannister LH, eds. Gray’s Anatomy. Edinburgh: Churchill Livingstone, 1989.

    Google Scholar 

  61. Hollinshead HW. The thorax, abdomen, and pelvis. In: Anatomy for Surgeons, Vol. 2. New York: Harper & Row, 1978:78–161.

    Google Scholar 

  62. Wakefield EG, Mayo CW. Intestinal obstruction produced by mesenteric bands in association with failure of intestinal rotation. Arch Surg 1936; 33:47–67.

    Article  Google Scholar 

  63. Mitchell GAG. The spread of acute intraperitoneal effusions. Br J Surg 1941; 28:291–296.

    Article  Google Scholar 

  64. Ahrenholz DH, Simmons RL. Peritonitis and other intra-abdominal infections. In: Howard RF, Simmons RL, eds. Surgical Infectious Disease, 2nd Ed. Norwalk: Appleton & Lange, 1988:605–646.

    Google Scholar 

  65. Hertzler AE. The Peritoneum. St. Louis: Mosby, 1919.

    Google Scholar 

  66. Bigatti G. Neoangigogenesis in Adhesion Formation and Peritoneal Healing. Berlin: Springer, 1997.

    Google Scholar 

  67. Ellis H, Harrison W, Hugh TB. The healing of peritoneum under normal and pathological conditions. Br J Surg 1965; 52:471–476.

    Article  PubMed  CAS  Google Scholar 

  68. Hubbard TB, Khan MZ, Carag VR, Albites VE, Hricko GM. The pathology of peritoneal repair: its relation to the formation of adhesions. Ann Surg 1967; 165:908–916.

    Article  PubMed  Google Scholar 

  69. Glucksman DL. Serosal integrity and intestinal adhesions. Surgery (St. Louis) 1966; 60:1009–1011.

    CAS  Google Scholar 

  70. Eskeland G. Regeneration of parietal peritoneum in rats. I. A light microscopical study. Acta Pathol Microbiol Scand 1966; 68:355–378.

    PubMed  CAS  Google Scholar 

  71. Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 1973; 115:375–392.

    PubMed  CAS  Google Scholar 

  72. Devens K, Recurrent intestinal obstruction in the neonatal period. Arch Dis Child 1963; 38:118–119.

    Article  PubMed  CAS  Google Scholar 

  73. Raftery AT. Regeneration of parietal and visceral peritoneum. A light microscopical study. Br J Surg 1973; 60:293–299.

    Article  PubMed  CAS  Google Scholar 

  74. Johnson FR, Whitting HW. Repair of parietal peritoneum. Br J Surg 1962; 49:653–660.

    Article  PubMed  CAS  Google Scholar 

  75. Brunschwig A, Robbins GF. Regeneration of peritoneum: experimental observations and clinical experience in radical resections of intra-abdominal cancer. In: XVth Congress of the Society of International Chirurgie, Lisbonne, 1953. Bruxelles: Henri de Smedt, 1954:756–765.

    Google Scholar 

  76. diZerega GS, Rodgers K. Fibroblasts and tissue repair cells. In: The Peritoneum. New York: Springer-Verlag, 1990: 122–144.

    Google Scholar 

  77. Hott JW, Godbey SW, Antony VB. Mesothelial cell modulation of pleural repair: thrombin stimulated mesothelial cells release prostaglandin E2. Prostaglandins Leukot Es-sent Fatty Acids 1994; 51:329–335.

    Article  CAS  Google Scholar 

  78. Robbins GF, Brunschwig A, Foote FW. Deperitonealiza-tion: clinical and experimental observations. Ann Surg 1949; 130:466–479.

    Article  Google Scholar 

  79. Lucas PA, Warejcka DJ, Young HE, et al. Formation of abdominal adhesion is inhibited by antibodies to transforming growth factor-ßl. J Surg Res 1996; 65:135–138.

    Article  PubMed  CAS  Google Scholar 

  80. Witz CA, Montoya-Rodriguez IA, Bena BS, et al. Mesothe-lium expression of integrins in vivo and in vitro. J Soc Gy-necol Invest 1998; 5:87–93.

    Article  CAS  Google Scholar 

  81. Elkins TE, Stovall TG, Warren J, Ling FW, Meyer NL. A histologic evaluation of peritoneal injury and repair: implications for adhesion formation. Obstet Gynecol 1987; 70:225–228.

    PubMed  CAS  Google Scholar 

  82. Bellina JH, Hemmings R, Voros JI, Ross LF. Carbon dioxide laser and electrosurgical wound study with an animal model: a comparison of tissue damage and healing patterns in peritoneal tissue. Am J Obstet Gynecol 1984; 148:327–334.

    PubMed  CAS  Google Scholar 

  83. Filmar S, Jeta N, McComb P, et al. A comparative histologic study on the healing process following tissue transec-tion: Part I. CO2 laser and electromicrosurgery. Am J Obstet Gynecol 1989; 160:1068–1072.

    PubMed  CAS  Google Scholar 

  84. Montgomery TC, Sharp JB, Bellina H, Ross LF. Comparative gross and histological study of the effects of scalpel, electric knife and carbon dioxide laser on skin and uterine incisions in dogs. Lasers Surg Med 1983; 3:9–22.

    Article  PubMed  CAS  Google Scholar 

  85. Weibel MA, Majno G. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am J Surg 1973; 126:345–353.

    Article  PubMed  CAS  Google Scholar 

  86. Perry JF Jr, Smith GA, Yonehiro EG. Intestinal obstruction caused by adhesions. A review of 388 cases. Ann Surg 1955; 142:810–816.

    Article  Google Scholar 

  87. Raf LE. Causes of abdominal adhesion in cases of intestinal obstruction. Acta Chir Scand 1969; 135:73–76.

    PubMed  CAS  Google Scholar 

  88. Nemir P. Intestinal obstruction; ten year survey at the Hospital of the University of Pennsylvania. Ann Surg 1952; 135:367–375.

    Article  PubMed  Google Scholar 

  89. Menzies D, Ellis H. Adhesion formation: the role of plas-minogen activator. Surg Gynecol 1991; 172:362–366.

    CAS  Google Scholar 

  90. Wilkins BM, Spitz L. Incidence of postoperative adhesion obstruction following neonatal laparotomy. Br J Surg 1986; 73:762–764.

    Article  PubMed  CAS  Google Scholar 

  91. Adhesion Study Group. Reduction of postoperative pelvic adhesions with intraperitoneal 32% dextran 70: a prospective, randomized clinical trial. Fertil Steril 1983; 40:612–619.

    Google Scholar 

  92. Interceed (TC7) Adhesion Barrier Group. Prevention of postsurgical adhesions by Interceed (TC7), an absorbable adhesion barrier: a prospective randomized multicenter clinical study. Fertil Steril 1989; 51:933–938.

    Google Scholar 

  93. Diamond MP, Daniell JF, Feste J. Adhesion reformation and de novo adhesion formation after reproductive pelvic surgery. Fertil Steril 1987; 47:864–866.

    PubMed  CAS  Google Scholar 

  94. Szigetvari I, Feinman M, Barad D, et al. Association of previous abdominal surgery and significant adhesions in laparoscopic sterilization patients. J Reprod Med 1989; 34:465–498.

    PubMed  CAS  Google Scholar 

  95. DeCherney AH, Mezer HC. The nature of posttuboplasty pelvic adhesions as determined by early and late laparos-copy. Fertil Steril 1984; 41:643–646.

    Google Scholar 

  96. Ali V, Newton E, Miller I, Sri I. Frequency of abdominal and pelvic adhesion after Cesarean section (abstract S63). J Am Assoc Gynecol Laparosc 1997; 4(suppl 4):563.

    Google Scholar 

  97. Browne AH, Hynes T. Multiple repeat caesarean section. J Obstet Gynaecol Br Commonw 1965; 72:693–699.

    Article  PubMed  CAS  Google Scholar 

  98. Ray NF, Larsen JW, Stillman RF, Jacobs RF. Economic impact of hospitalization for lower abdominal adhesiolysis in United States in 1988. Surg Gynecol Obstet 1993; 176:271–276.

    PubMed  CAS  Google Scholar 

  99. Ray NF, Denton WG, Thamer M, et al. Adbominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg 1998; 186:1–9.

    Article  PubMed  CAS  Google Scholar 

  100. Ivarsson ML, Holmdahl L, Franzjen G, Reisbert B. Cost of bowel obstruction resulting from adhesions. Eur J Surg 1997; 163:679–684.

    PubMed  CAS  Google Scholar 

  101. McGuire A. The economic impact of post-operative adhesions. Clinical and epidemiological perspectives on post-operative adhesions. Abstract presented at the annual scientific meeting of the Association of Surgeons Great Britain and Ireland, 13–15 May, Edinburgh Scotland, 1998.

    Google Scholar 

  102. Sigel B, Golub M, Loiacono LA, et al. Technique of ultrasonic detection and mapping of abdominal wall adhesions. Surg Endosc 1991; 5:161–165.

    Article  PubMed  CAS  Google Scholar 

  103. Kodama I, Loiacono LA, Sigel B, et al. Ultrasonic detection of viscera slide as an indicator of abdominal wall adhesion. J Clin Ultrasound 1992; 20:375–801.

    Article  PubMed  CAS  Google Scholar 

  104. Lamont PM, Menziers D, Ellis H. Intra-abdominal adhesion formation between two adjacent deperitonealised surfaces. Surg Res Commun 1992; 13:127–130.

    Google Scholar 

  105. Haney AF, Doty E. The formation of coalescing peritoneal adhesions requires injury to both contacting peritoneal surfaces. Fertil Steril 1994; 61:767–775.

    PubMed  CAS  Google Scholar 

  106. Kligman I, Drachenberg C, Papadimitriou J, et al. Im-munohistochemical demonstration of nerve fiber in pelvic adhesions. Obstet Gynecol 1993; 82:566–568.

    PubMed  CAS  Google Scholar 

  107. Tulandi T, Chen MF, Sundus A, et al. A study of nerve fibers and histopathology of postsurgical, postinfectious, and endometriosis-related adhesions. Obstet Gynecol 1998; 92:766–768.

    Article  PubMed  CAS  Google Scholar 

  108. Milligan DW, Raftery AT. Observations on the pathogene-sis of peritoneal adhesions: a light and electron microscopical study. Br J Surg 1974; 61:270–280.

    Article  Google Scholar 

  109. Harris ES, Morgan RF, Rodeheaver GT. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery (St.Louis) 1995; 117:663–669.

    Article  CAS  Google Scholar 

  110. Abe H, Rodgers KE, Campeau JD, et al. The effect of intraperitoneal administration of sodium tolmetin-hyaluronic acid on the postsurgical cell infiltration in vivo. J Surg Res 1990; 49:322–327.

    Article  PubMed  CAS  Google Scholar 

  111. Ramos BF, Qureshi R, Olsen KE, Jakschik BA. The importance of mast cells for the neutrophil influx in immune complex-induced peritonitis in mice. J Immunol 1990; 145:1868–1873.

    PubMed  CAS  Google Scholar 

  112. Qureshi R, Jakschik BA. The role of mast cells in thiogly-collate-induced inflammation. J Immunol 1988; 141:2090–2096.

    PubMed  CAS  Google Scholar 

  113. Collins SM, Marzio L, Vermillion DL, Blennerhassett P, Chiverton S. The immunomodulation of gut motility: factors that determine the proliferation of mast cells in the sensitized gut. Gastroenterology 1988; 94:A74.

    Google Scholar 

  114. Moriwaki K, Jujii K, Yuge O. Protein exudation induced by manipulation of the intestines and mesentery during laparotomy in rat: a study of the mechanism of ‘third spacezzz’ loss. In Vivo 1997; 11:325–327.

    PubMed  CAS  Google Scholar 

  115. Liebman SM, Langer JC, Marshall JS, et al. Role of mast cells in peritoneal adhesion formation. Am J Surg 1993; 165:127–130.

    Article  PubMed  CAS  Google Scholar 

  116. Ellis H. The cause and prevention of postoperative in-traperitoneal adhesions. Surg Gynecol 1971; 133:497–511.

    CAS  Google Scholar 

  117. Ellis H. Prevention and treatment of adhesions. Infect Surg 1983; 11:803–807.

    Google Scholar 

  118. Buckman RF, Buckman PD, Hufnagel HV, et al. A physiologic basis for the adhesion-free healing of depertoneal-ized surfaces. J Surg Res 1976; 21:67–76.

    Article  PubMed  Google Scholar 

  119. Bridges JB, Johnson FR, Whitting HW. Peritoneal adhesion formation. Acta Anat (Basel) 1965; 261:203–212.

    Article  Google Scholar 

  120. Richardson EH. Studies on peritoneal adhesions: with a contribution to the treatment of denuded surfaces. Am Surg 1911; 54:758–797.

    CAS  Google Scholar 

  121. Holmdahl L, Risberg B. Surgical glove powder: an overlooked risk. Severe adverse effects are well-documented. Lakartidningen 1993; 90:2047–2049.

    CAS  Google Scholar 

  122. Schade DS, Williamson JR. The pathogenesis of peritoneal adhesions: an ultrastructural study. Ann Surg 1968; 167:500–510.

    Article  PubMed  CAS  Google Scholar 

  123. Turunen AOL Ueber die postoperativen verwachs ungen und deren Verhutung speziell im anschluss an gynakologische laparotomien. Duodecim Ser B 1933; 18:1–9.

    Google Scholar 

  124. Pittaway DE, Daniell JF, Maxson WS. Ovarian surgery in an infertility patient as an indication for short-interval second-look laparoscopy: a preliminary study. Fertil Steril 1985; 44:611–614.

    PubMed  CAS  Google Scholar 

  125. Jackson BB. Observations on intraperitoneal adhesions, an experimental study. Surgery (St. Louis) 1958; 44:507–518.

    CAS  Google Scholar 

  126. Bronson RA, Wallach EE. Lysis of periadnexal adhesions for correction of infertility. Fertil Steril 1977; 28:613–619.

    PubMed  CAS  Google Scholar 

  127. Ryan GB, Grobety J, Majno G. Postoperative peritoneal adhesions: a study of the mechanisms. Am J Pathol 1971; 65:117–148.

    PubMed  CAS  Google Scholar 

  128. Golan A, Winston RML. Blood and intraperitoneal adhesion formation in the rat. J Obstet Gynaecol 1989; 9:248–252.

    Article  Google Scholar 

  129. Thompson JN, Scott-Coombes DM, Whawell SA. Peritoneal fibrinolysis and adhesion formation. In: di Zerega GS, ed. Pelvic Surgery. New York: Springer-Verlag, 1997.

    Google Scholar 

  130. Holmdahl L, Eriksson E, Eriksson B, Risberg B. Depression of peritoneal fibrinolysis during operation is a local response to trauma. Surgery (St. Louis) 1998; 123:539–544.

    Article  CAS  Google Scholar 

  131. Whawell SA, Scott-Coombes DM, Vipond MN, Tebbutt SJ, Thompson JN. Tumor necrosis factor mediated release of plasminogen activator inhibitor-1 by human peritoneal mesothelia cells. Br J Surg 1994: 81:214–216.

    Article  PubMed  CAS  Google Scholar 

  132. Scott-Coombes DM, Whawell SA, Vipond MN, Thompson JN. The human intraperitoneal fibrinolytic response to elective surgery. Br J Surg 1995; 160:471–477.

    Google Scholar 

  133. Bordes WA, Noble NA. Transforming growth factor ß in tissue fibrosis. N Engl J Med 1994; 331:1286–1292.

    Article  Google Scholar 

  134. Williams RS. Rossi AM, Chegini N, et al. Effect of transforming growth factor-ß on postoperative adhesion formation and intact peritoneum. J Surg Res 1992; 51:65–70.

    Article  Google Scholar 

  135. McDonald MN, Elkins TE, Wortham GF, et al. Adhesion formation and prevention after peritoneal injury and repair in the rabbit. J Reprod Med 1988; 33:436–439.

    PubMed  CAS  Google Scholar 

  136. Tulandi T. Adhesion formation after reproductive surgery with and without the carbon dioxide laser. Fertil Steril 1987; 47:704–706.

    PubMed  CAS  Google Scholar 

  137. Ellis H, Heddle R. Does the peritoneum need to be closed at laparotomy? Br J Surg 1977; 64:733–736.

    Article  PubMed  CAS  Google Scholar 

  138. Milewczyk M. Experimental studies on the development of peritoneal adhesions in cases of suturing and nonsu-turing of the parietal peritoneum in rabbits. Ginekol Pol 1989; 60:1–6.

    PubMed  CAS  Google Scholar 

  139. Swanwick RA, Stockdale PH, Milne FJ. Healing of parietal peritoneum in the horse. Br Vet J 1963; 129:29–35.

    Google Scholar 

  140. Hugh TB, Nankivel C, Meagher AP, et al. Is closure of the peritoneal layer necessary in the repair of midline surgical abdominal wounds? World J Surg 1990; 14:231–234.

    Article  PubMed  CAS  Google Scholar 

  141. Ling FW, Stovall TG, Meyer NL, et al. Adhesion formation associated with the use of absorbable staples in comparison to other types of peritoneal injury. IntJ Gynaecol Obstet 1989; 30:361–366.

    Article  CAS  Google Scholar 

  142. Luciano AA, Häuser KS, Benda J. Evaluation of commonly used adjuvants in the prevention of postoperative adhesion. Am J Obstet Gynecol 1983; 146:88–92.

    PubMed  CAS  Google Scholar 

  143. Connolly JE, Stephens FO. Factors influencing the incidence of intra-peritoneal adhesions: an experimental study. Surgery (St. Louis) 1968; 63:976–979.

    Google Scholar 

  144. Trimpi HD, Bacon HE. Clinical and experimental study of denuded surfaces in extensive surgery of the colon and rectum. Am J Surg 1952; 34:596–602.

    Article  Google Scholar 

  145. Ulfelder H, Quinby WC Jr. Small bowel obstruction following combined abdominoperitoneal resection of the rectum. Surgery (St. Louis) 1951; 30:174–177.

    CAS  Google Scholar 

  146. Glucksman DL. Warren WD. The effect of topically applied corticosteroids in the prevention of peritoneal adhesions: an experimental approach with a review of the literature. Surgery (St. Louis) 1966; 60:352–360.

    CAS  Google Scholar 

  147. Rhoades JE, Schwegman CW. One-stage combined ab-dominoperineal resection of the rectum (Miles) performed by two surgical teams. Surgery (St. Louis) 1965; 58:600–606.

    Google Scholar 

  148. Singelton AOJr, Rowe EB, Moore RM. Failure of reperi-tonealization to prevent abdominal adhesions in the dog. AmJ Surg 1952; 18:789–792.

    Google Scholar 

  149. Chester J, Zimmer CH, Hoffman LD. The use of free peritoneal grafts in intestinal anastomosis. Surg Gynecol Ob-stet 1948; 89:605–608.

    Google Scholar 

  150. Thomas JW, Rhoads JE. Adhesion resulting from removal of serosa from an area of bowel: failure of oversewing to lower incidence in the rat and the guinea pig. Arch Surg 1950; 61:565–576.

    Article  PubMed  CAS  Google Scholar 

  151. Hull DB, Varner MW. A randomized study of closure of the peritoneum at cesarean delivery. Obstet Gynecol 1991; 77:818–821.

    PubMed  CAS  Google Scholar 

  152. Pietrantoni M, Parsons MT, O’Brien WF, et al. Peritoneal closure or non-closure at cesarean section. Obstet Gynecol 1991; 77:2–6.

    Article  Google Scholar 

  153. Nagele F, Husslein P. Visceral peritonealization after abdominal hysterectomy—a retrospective pilot study. Geburtsh Frauenheilkd 1991; 51:925–928.

    Article  CAS  Google Scholar 

  154. Gupta JK, Dinas K, Kahn ELS. To peritonealize or not to peritonealize? A randomized trial at abdominal hysterectomy. Am J Obstet Gynecol 1968; 178:796–800.

    Article  Google Scholar 

  155. Tulandi T, Falcone T, Kafka I. Second-look operative lapa-roscopy 1 year following reproductive surgery. Fertil Steril 1989; 52:421–424.

    PubMed  CAS  Google Scholar 

  156. Gilbert JM, Ellis H, Foweraker S. Peritoneal closure after lateral paramedian incision. Br J Surg 1987; 74:113–115.

    Article  PubMed  CAS  Google Scholar 

  157. Vipond MN, Whawell SA, Thompson JN, et al. Peritoneal fibrinolytic activity and intra-abdominal adhesions. Lancet 1990; 335:1120–1122.

    Article  PubMed  CAS  Google Scholar 

  158. O’Leary D, Coakley JB. The influence of suturing and sepsis on the development of postoperative peritoneal adhesions. Ann R Coll Surg Engl 1992; 74:134–137.

    PubMed  Google Scholar 

  159. Brill AI, Farr MD, Nezhat MD, et al. The incidence of adhesions after prior laparotomy: a laparoscopic appraisal. Obstet Gynecol 1995; 85:269–272.

    Article  PubMed  CAS  Google Scholar 

  160. Levrant SG, Bieber EJ, Barnes RB. Anterior abdominal wall adhesions after laparotomy or laparoscopy. J Am As-soc Gynecol Laparosc 1997; 4:353–356.

    Article  CAS  Google Scholar 

  161. Bakkum EA, Trimbor-Kemper GCM. Natural course of postsurgical adhesions. Microsurgery 1995; 16:650–654.

    Article  PubMed  CAS  Google Scholar 

  162. DeCherney AH, Laufer N. The use of a new synthetic ab-sorbable monofilament suture, polydioxanone (PDS) for surgery. Fertil Steril 1983; 39:401–405.

    Google Scholar 

  163. Mencke H, Schünke M, Schultz S, Semm K. Incidence of adhesions following thermal tissue damage. Res Exp Med 1991; 191:405–412.

    Article  Google Scholar 

  164. Diamond MP, Daniell JF, Martin DC, et al. Tubal patency and pelvic adhesions at early second-look laparoscopy following intraabdominal use of the carbon dioxide laser: initial report of the intraabdominal laser study group. Fertil Steril 1984; 42:717–723.

    PubMed  CAS  Google Scholar 

  165. Filmar S, Gomel V, McComb P. The effectiveness of CO2 laser and electromicrosurgery in adhesiolysis: a comparative study. Fertil Steril 1986; 45:407–411.

    PubMed  CAS  Google Scholar 

  166. Luciano AA, Maier DB, Kock El, et al. A comparative study of postoperative adhesions following laser surgery by laparoscopy in the rabbit model. Obstet Gynecol 1989; 74:220–224.

    PubMed  CAS  Google Scholar 

  167. Sahakian V, Rogers R, Halme J, et al. Effects of carbon dioxide-saturated normal saline and Ringer’s lactate on postsurgical adhesion formation in the rabbit. Obstet Gynecol 1993; 82:851–853.

    PubMed  CAS  Google Scholar 

  168. Ott DE. Pollutants resulting from intraabdominal tissue combustion. In: di Zerega GS, ed. Pelvic Surgery. New York: Springer-Verlag, 1997:251–252 (abstract 11).

    Google Scholar 

  169. Tulandi T, Chan KL, Arseneau J. Histopathological and adhesion formation after incision using ultrasonic vibrating scalpel and regular scalpel in the rat. Fertil Steril 1994; 61:548–550.

    PubMed  CAS  Google Scholar 

  170. Operative Laparoscopy Study Group. Postoperative adhesion development after operative laparoscopy: evaluation at early second-look procedures. Fertil Steril 1991; 44:700–704.

    Google Scholar 

  171. Daniell JF, Pittaway DE, Maxson WE. The role of laparoscopic adhesion lysis in an in vitro fertilization program. Fertil Steril 1983; 40:49–52.

    PubMed  CAS  Google Scholar 

  172. Diamond MP, Daniell JF, Martin DC, et al. Tubal patency and pelvic adhesions at early second-look laparoscopy following intraabdominal use of the carbon dioxide laser: initial report of the intraabdominal laser study group. Fertil Steril 1984; 42:717–723.

    PubMed  CAS  Google Scholar 

  173. Daniell JF, Pittaway DE. Short interval second-look laparoscopy after infertility surgery: a preliminary report. J Reprod Med 1983; 28:281–283.

    PubMed  CAS  Google Scholar 

  174. Raj SG, Hulka JF. Second-look laparoscopy in infertility surgery; therapeutic and prognostic value. Fertil Steril 1982; 38:325.

    PubMed  CAS  Google Scholar 

  175. Surrey MW, Friedman S. Second-look laparoscopy after reconstructive pelvic surgery for infertility. J Reprod Med 1982; 27:658–660.

    Article  PubMed  CAS  Google Scholar 

  176. McLaughlin DS. Evaluation of adhesion reformation by early second-look laparoscopy following microlaser ovarian wedge resection. Fertil Steril 1984; 42:531–537.

    PubMed  CAS  Google Scholar 

  177. DeCherney AH, Mezer HC. The nature of posttuboplasty pelvic adhesions as determined by early and late laparoscopy. Fertil Steril 1984; 41:643–646.

    Google Scholar 

  178. Trimbos-Kemper TCM, Trimbos JB, van Hall EV. Adhesion formation after tubal surgery: results of the eighth-day laparoscopy in 188 patients. Fertil Steril 1985; 43:395–398.

    PubMed  CAS  Google Scholar 

  179. Jansen RP. Early laparoscopy after pelvic operations to prevent adhesions: safety and efficacy. Fertil Steril 1988; 49:26–31.

    PubMed  CAS  Google Scholar 

  180. Serour GI, Badraoui MH, el Agizi HM, et al. Laparoscopic adhesiolysis for infertile patients with pelvic adhesive disease. Int J Gynaecol Obstet 1989; 30:249–252.

    Article  PubMed  CAS  Google Scholar 

  181. Mencke H, Semm K, Freys I, et al. Incidence of adhesions in the true pelvis after pelviscopic operative treatment of tubal pregnancy. Gynecol Obstet Invest 1989; 28:202–204.

    Article  Google Scholar 

  182. Steege JF. Repeated clinic laparoscopy for the treatment of pelvic adhesions: a pilot study. Obstet Gynecol 1994; 83:276–279.

    PubMed  CAS  Google Scholar 

  183. Wright JA, Sharpe-Timms KL. Gonadotropin-releasing hormone agonist therapy reduces postoperative adhesion formation and reformation after adhesiolysis in rat models for adhesion formation and endometriosis. Fertil Steril 1995; 63:1094–1100.

    PubMed  CAS  Google Scholar 

  184. Smith SK. Vascular endothelial growth factor and the en-dometrium. Hum Reprod (Oxf) 1996; 11:56–61.

    Article  CAS  Google Scholar 

  185. Grow DR, Coddington CC, Hsiu JG, Mikich Y, Gidgeb GD. Role of hypoestrogenism or sex steroid antagonism in adhesion formation after myometrial surgery in primates. Fertil Steril 1996; 66:140–147.

    PubMed  CAS  Google Scholar 

  186. Murphy LJ, Ghahary A. Uterine insulin-like growth factor. I: Regulation of expression and its role in estrogen induced uterine proliferation. Endocr Rev 1990; 11:443–453.

    CAS  Google Scholar 

  187. Iwamoto I, Imada A. Effects of growth factors on proliferation of cultured mesothelial cells. Nippon Jinzo Gakkai Shi 1992; 34:1201–1208.

    PubMed  CAS  Google Scholar 

  188. Montanino-Oliva D, Metzerga DA, Luciano AA. Use of medroxyprogesterone acetate in the prevention of postoperative adhesions. Fertil Steril 1996; 65:650–654.

    PubMed  CAS  Google Scholar 

  189. Rodgers KE, Ellefson DD, Girgis W, et al. Modulation of postsurgical cell infiltration and fibrinolytic activity by tolmetin in two species. J Surg Res 1994; 56:314–325.

    Article  PubMed  CAS  Google Scholar 

  190. Chegini N, Simms J, Williams S, Materson BJ. Identification of epidermal growth factor, transforming growth fac-tor-a, and epidermal growth factor receptor in surgically induced pelvic adhesions in the rat and intraperitoneal adhesions in the human. Am J Obstet Gynecol 1994; 17:321–328.

    Google Scholar 

  191. Hill JA, Muldoon TG, Gallup DG, Turner WA, Loy RA, Talledor OE. Cytosol estrogen receptor content of female parietal peritoneum. Am J Obstet Gynecol 1986; 154:943–944.

    PubMed  CAS  Google Scholar 

  192. Prentice A, Randall BJ, McGill A, et al. Ovarian steroid receptor expression in endometriosis and in two potential parent epithelia: endometrium and peritoneal mesothe-lium. Hum Reprod (Oxf) 1992; 7:1318–1325.

    CAS  Google Scholar 

  193. Nakayama K, Masuzawa H, Ki SF, et al. Imunohistochemi-cal analysis of the peritoneum adacent to endometriotic lesions using antibodies for Ber-EP4 antigen, estrogen receptors, and progesterone receptors: implication of peritoneal metaplasia in the pathogenesis of endometriosis. Int J Gynecol Pathol 1994; 4:348–358.

    Article  Google Scholar 

  194. Metzger DA, Breault DT, Chaffkin L, et al. The role of estrogen in adhesion reformation. Soc Gynecol Invest 1993; 292:347 (abstract).

    Google Scholar 

  195. Lamorte A, Gutmann JN, Carcangiu ML, et al. The role of estrogen in adhesion formation. Soc Gynecol Invest 1993; 292:238 (abstract).

    Google Scholar 

  196. Grow DR, Seltman HJ, Coddington CC, Hodgen GD. The reduction of postoperative adhesions by two different barrier methods versus control in cynomolgus monkeys: a prospective, randomized, crossover study. Fertil Steril 1994; 61:1141–1146.

    PubMed  CAS  Google Scholar 

  197. Diamond MP, Seprafim Adhesion Group. Reduction of adhesions after uterine myomectomy by Seprafilm® membrane (HAL-F®): a blinded, prospective, ramdom-ized, multicenter clinical study. Fertil Steril 1996; 66:904–910.

    PubMed  CAS  Google Scholar 

  198. Blauer KL, Collins RL. The effect of intraperitoneal progesterone on postoperative adhesion formation in rabbits. Fertil Steril 1988; 49:144–149.

    PubMed  CAS  Google Scholar 

  199. Gillett WR. Artefactual loss of human ovarian surface epithelium: potential clinical significance. Reprod Fertil Dev 1991; 3:93–98.

    Article  PubMed  CAS  Google Scholar 

  200. Merlo G, Fausone G, Barbero C, et al. Fibrinolytic activity of the human peritoneum. Eur Surg Res 1980; 88:623–630.

    Google Scholar 

  201. Wallach EE, Manara LR, Eisenberg E. Experience with 143 cases of tubal surgery. Fertil Steril 1983; 39:609–617.

    PubMed  CAS  Google Scholar 

  202. Young PE, Egan JE, Barlow JJ, et al. Reconstructive surgery for infertility at the Boston Hospital for Women. Am J Obstet Gynecol 1970; 108:1092–1097.

    PubMed  CAS  Google Scholar 

  203. Frantzen C, Schlosser HW. Microsurgery and postinfec-tious tubal infertility. Fertil Steril 1982; 38:397–420.

    PubMed  CAS  Google Scholar 

  204. Diamond E. Lysis of postoperative pelvic adhesions in infertility. Fertil Steril 1979; 31:287–295.

    PubMed  CAS  Google Scholar 

  205. Luber K, Beeson CC, Kennedy JF, et al. Results of micro-surgical treatment of tubal infertility and early second-look laparoscopy in the post-pelvic inflammatory disease patient: implication for in vitro fertilization. Am J Obstet Gynecol 1986; 154:1264–1270.

    PubMed  CAS  Google Scholar 

  206. Hulka JF. Adnexal adhesions: a prognostic staging and classification system based on a five-year survey of fertility surgery results at Chapel Hill, North Carolina. Am J Ob-stet Gynecol 1982; 144:141–148.

    CAS  Google Scholar 

  207. Gomel V. Microsurgery in Female Infertility. 1st Ed. Boston: Little, Brow 1983:225–244.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

DiZerega, G.S. (2000). Peritoneum, Peritoneal Healing, and Adhesion Formation. In: diZerega, G.S. (eds) Peritoneal Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1194-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1194-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7040-9

  • Online ISBN: 978-1-4612-1194-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics