Skip to main content

Pro-inflammatory and Anti-inflammatory Mediators in Critical Illness and Injury

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Many forms of critical illness are characterized, at their onset, by a pro-inflammatory insult. Counter-regulatory, anti-inflammatory processes also exist in order to promote immunologic homeostasis. These processes are driven by, and modulate, the innate and adaptive arms of the immune system and are, in part, mediated by cytokines and chemokines. While surges in these pro-inflammatory mediators clearly produce many of the signs and symptoms of critical illness, the resultant anti-inflammatory surge has associated consequences as well. Systemic cytokine levels and leukocyte mRNA expression patterns suggest significant dysregulation of the inflammatory response in critical illness, though immune function testing is likely to be important as well. Severe reductions in innate and adaptive immune function following the onset of critical illness have been reported with increased risks for nosocomial infection and death across a wide array of adult and pediatric forms of critical illness. Immune monitoring and modulation trials are badly needed in the ICU, as growing evidence suggests that severe critical illness-induced immune suppression, or immunoparalysis, is reversible with potentially beneficial effects on outcomes. In addition, it appears that many of the therapies that are routinely used in critically ill children, including medications and transfusions, are likely to be inadvertently immunomodulatory. The role of these therapies, as well as the role of host genetics, on immunologic function and immunologic balance is poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Eijk LT, Dorresteijn MJ, Smits P, van der Hoeven JG, Netea MG, Pickkers P. Gender differences in the innate immune response and vascular reactivity following the administration of endotoxin to human volunteers*. Crit Care Med. 2007;35(6):1464–9.

    Article  PubMed  Google Scholar 

  2. Uematsu S, Akira S. Toll-like receptors (TLRs) and their ligands. Handb Exp Pharmacol. 2008;183:1–20.

    Article  PubMed  CAS  Google Scholar 

  3. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 2005;26(8):447–54.

    Article  PubMed  CAS  Google Scholar 

  4. Kuipers MT, van der Poll T, Schultz MJ, Wieland CW. Bench-to-bedside review: damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care (Lond). 2011;15(6):235.

    Article  Google Scholar 

  5. Romagnani S. Human Th17 cells. Arthritis Res Ther. 2008;10(2):206.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9(3):239–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Hotchkiss RS, Tinsley KW, Karl IE. Role of apoptotic cell death in sepsis. Scand J Infect Dis. 2003;35(9):585–92.

    Article  PubMed  CAS  Google Scholar 

  8. Kellum JA, Kong L, Fink MP, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med. 2007;167(15):1655–63.

    Article  PubMed  CAS  Google Scholar 

  9. Fioretto JR, Martin JG, Kurokawa CS, et al. Interleukin-6 and procalcitonin in children with sepsis and septic shock. Cytokine. 2008;43(2):160–4.

    Article  PubMed  CAS  Google Scholar 

  10. Doughty LA, Kaplan SS, Carcillo JA. Inflammatory cytokine and nitric oxide responses in pediatric sepsis and organ failure. Crit Care Med. 1996;24(7):1137–43.

    Article  PubMed  CAS  Google Scholar 

  11. Wong HR, Cvijanovich N, Wheeler DS, et al. Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock. Am J Respir Crit Care Med. 2008;178(3):276–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Ozturk H, Yagmur Y, Ozturk H. The prognostic importance of serum IL-1beta, IL-6, IL-8 and TNF-alpha levels compared to trauma scoring systems for early mortality in children with blunt trauma. Pediatr Surg Int. 2008;24(2):235–9.

    Article  PubMed  Google Scholar 

  13. Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285(2):E433–7.

    PubMed  CAS  Google Scholar 

  14. Abraham E, Anzueto A, Gutierrez G, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet. 1998;351(9107):929–33.

    Article  PubMed  CAS  Google Scholar 

  15. Opal SM, Fisher Jr CJ, Dhainaut JF, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med. 1997;25(7):1115–24.

    Article  PubMed  CAS  Google Scholar 

  16. Fisher Jr CJ, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA. 1994;271(23):1836–43.

    Article  PubMed  Google Scholar 

  17. Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, Moller K. Human endotoxemia as a model of systemic inflammation. Curr Med Chem. 2008;15(17):1697–705.

    Article  PubMed  CAS  Google Scholar 

  18. Hall MW, Geyer SM, Guo CY, et al. Innate immune function and mortality in critically ill children with influenza: a multicenter study. Crit Care Med. 2013;41(1):224–36.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Cornell TT, Sun L, Hall MW, et al. Clinical implications and molecular mechanisms of immunoparalysis after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;143(5):1160–6.e1.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Allen ML, Hoschtitzky JA, Peters MJ, et al. Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. Crit Care Med. 2006;34(10):2658–65.

    Article  PubMed  CAS  Google Scholar 

  21. Doughty L, Carcillo JA, Kaplan S, Janosky J. The compensatory anti-inflammatory cytokine interleukin 10 response in pediatric sepsis-induced multiple organ failure. Chest. 1998;113(6):1625–31.

    Article  PubMed  CAS  Google Scholar 

  22. Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC. The use of gene-expression profiling to identify candidate genes in human sepsis. Am J Respir Crit Care Med. 2007;176(7):676–84.

    Article  PubMed  CAS  Google Scholar 

  23. Tang BM, Huang SJ, McLean AS. Genome-wide transcription profiling of human sepsis: a systematic review. Critical Care (Lond). 2010;14(6):R237.

    Article  Google Scholar 

  24. Wong HR, Cvijanovich N, Allen GL, et al. Genomic expression profiling across the pediatric systemic inflammatory response syndrome, sepsis, and septic shock spectrum. Crit Care Med. 2009;37(5):1558–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Wong HR. Genetics and genomics in pediatric septic shock. Crit Care Med. 2012;40(5):1618–26.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Shanley TP, Cvijanovich N, Lin R, et al. Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock. Mol Med (Camb). 2007;13(9–10):495–508.

    CAS  Google Scholar 

  27. Wong HR, Freishtat RJ, Monaco M, Odoms K, Shanley TP. Leukocyte subset-derived genomewide expression profiles in pediatric septic shock. Pediatr Crit Care Med. 2010;11(3):349–55.

    PubMed Central  PubMed  Google Scholar 

  28. Wong HR, Shanley TP, Sakthivel B, et al. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiol Genomics. 2007;30(2):146–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Xiao W, Mindrinos MN, Seok J, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Livingston DH, Appel SH, Wellhausen SR, Sonnenfeld G, Polk Jr HC. Depressed interferon gamma production and monocyte HLA-DR expression after severe injury. Arch Surg. 1988;123(11):1309–12.

    Article  PubMed  CAS  Google Scholar 

  31. Ditschkowski M, Kreuzfelder E, Rebmann V, et al. HLA-DR expression and soluble HLA-DR levels in septic patients after trauma. Ann Surg. 1999;229(2):246–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Giannoudis PV, Smith RM, Windsor AC, Bellamy MC, Guillou PJ. Monocyte human leukocyte antigen-DR expression correlates with intrapulmonary shunting after major trauma. Am J Surg. 1999;177(6):454–9.

    Article  PubMed  CAS  Google Scholar 

  33. Asadullah K, Woiciechowsky C, Docke WD, et al. Very low monocytic HLA-DR expression indicates high risk of infection–immunomonitoring for patients after neurosurgery and patients during high dose steroid therapy. Eur J Emerg Med. 1995;2(4):184–90.

    Article  PubMed  CAS  Google Scholar 

  34. Cheadle WG, Mercer-Jones M, Heinzelmann M, Polk Jr HC. Sepsis and septic complications in the surgical patient: who is at risk? Shock (Augusta Ga). 1996;6 Suppl 1:S6–9.

    Article  Google Scholar 

  35. Volk HD, Reinke P, Krausch D, et al. Monocyte deactivation–rationale for a new therapeutic strategy in sepsis. Intensive Care Med. 1996;22 Suppl 4:S474–81.

    Article  PubMed  Google Scholar 

  36. Fumeaux T, Pugin J. Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. Am J Respir Crit Care Med. 2002;166(11):1475–82.

    Article  PubMed  Google Scholar 

  37. Reinke P, Volk HD. Diagnostic and predictive value of an immune monitoring program for complications after kidney transplantation. Urol Int. 1992;49(2):69–75.

    Article  PubMed  CAS  Google Scholar 

  38. Ho YP, Sheen IS, Chiu CT, Wu CS, Lin CY. A strong association between down-regulation of HLA-DR expression and the late mortality in patients with severe acute pancreatitis. Am J Gastroenterol. 2006;101(5):1117–24.

    Article  PubMed  CAS  Google Scholar 

  39. Venet F, Tissot S, Debard AL, et al. Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: correlation with severity and secondary septic shock. Crit Care Med. 2007;35(8):1910–7.

    Article  PubMed  CAS  Google Scholar 

  40. Monneret G, Lepape A, Voirin N, et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 2006;32(8):1175–83.

    Article  PubMed  Google Scholar 

  41. Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.

    Article  PubMed  CAS  Google Scholar 

  42. Allen ML, Peters MJ, Goldman A, et al. Early postoperative monocyte deactivation predicts systemic inflammation and prolonged stay in pediatric cardiac intensive care. Crit Care Med. 2002;30(5):1140–5.

    Article  PubMed  Google Scholar 

  43. Flach R, Majetschak M, Heukamp T, et al. Relation of ex vivo stimulated blood cytokine synthesis to post-traumatic sepsis. Cytokine. 1999;11(2):173–8.

    Article  PubMed  CAS  Google Scholar 

  44. Docke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678–81.

    Article  PubMed  CAS  Google Scholar 

  45. Hall MW, Gavrilin MA, Knatz NL, Duncan MD, Fernandez SA, Wewers MD. Monocyte mRNA phenotype and adverse outcomes from pediatric multiple organ dysfunction syndrome. Pediatr Res. 2007;62(5):597–603.

    Article  PubMed  CAS  Google Scholar 

  46. Marquardt DJ, Knatz NL, Wetterau LA, Wewers MD, Hall MW. Failure to recover somatotropic axis function is associated with mortality from pediatric sepsis-induced multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2010;11(1):18–25.

    Article  PubMed  Google Scholar 

  47. Mella C, Suarez-Arrabal MC, Lopez S, et al. Innate immune dysfunction is associated with enhanced disease severity in infants with severe respiratory syncytial virus bronchiolitis. J Infect Dis. 2013;207(4):564–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166(11):6952–63.

    Article  PubMed  CAS  Google Scholar 

  49. Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–605.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Felmet KA, Hall MW, Clark RS, Jaffe R, Carcillo JA. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J Immunol. 2005;174(6):3765–72.

    Article  PubMed  CAS  Google Scholar 

  51. Monneret G, Debard AL, Venet F, et al. Marked elevation of human circulating CD4 + CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003;31(7):2068–71.

    Article  PubMed  Google Scholar 

  52. Venet F, Pachot A, Debard AL, et al. Increased percentage of CD4 + CD25+ regulatory T cells during septic shock is due to the decrease of CD4 + CD25- lymphocytes. Crit Care Med. 2004;32(11):2329–31.

    PubMed  Google Scholar 

  53. Hershman MJ, Appel SH, Wellhausen SR, Sonnenfeld G, Polk Jr HC. Interferon-gamma treatment increases HLA-DR expression on monocytes in severely injured patients. Clin Exp Immunol. 1989;77(1):67–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Nierhaus A, Montag B, Timmler N, et al. Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis. Intensive Care Med. 2003;29(4):646–51.

    PubMed  Google Scholar 

  55. Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Pinsky MR. Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest. 2005;127(6):2139–50.

    Article  PubMed  CAS  Google Scholar 

  56. Meisel C, Schefold JC, Pschowski R, et al. GM-CSF to reverse sepsis-associated immunosuppression: a double-blind randomized placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180(7):640–8.

    Article  PubMed  CAS  Google Scholar 

  57. Hotchkiss RS, Opal S. Immunotherapy for sepsis–a new approach against an ancient foe. N Engl J Med. 2010;363(1):87–9.

    Article  PubMed  CAS  Google Scholar 

  58. Nair MP, Schwartz SA, Polasani R, Hou J, Sweet A, Chadha KC. Immunoregulatory effects of morphine on human lymphocytes. Clin Diag Lab Immunol. 1997;4(2):127–32.

    CAS  Google Scholar 

  59. Singhal PC, Kapasi AA, Franki N, Reddy K. Morphine-induced macrophage apoptosis: the role of transforming growth factor-beta. Immunology. 2000;100(1):57–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Zavala F. Benzodiazepines, anxiety and immunity. Pharmacol Ther. 1997;75(3):199–216.

    Article  PubMed  CAS  Google Scholar 

  61. Marik PE, Raghavan M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med. 2004;30(5):748–56.

    Article  PubMed  Google Scholar 

  62. Bergmann M, Sautner T. Immunomodulatory effects of vasoactive catecholamines. Wien Klin Wochenschr. 2002;114(17–18):752–61.

    PubMed  CAS  Google Scholar 

  63. Muszynski J, Nateri J, Nicol K, Greathouse K, Hanson L, Hall M. Immunosuppressive effects of red blood cells on monocytes are related to both storage time and storage solution. Transfusion. 2012;52(4):794–802.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Baumgartner JM, Silliman CC, Moore EE, Banerjee A, McCarter MD. Stored red blood cell transfusion induces regulatory T cells. J Am Coll Surg. 2009;208(1):110–9.

    Article  PubMed  Google Scholar 

  65. Offner PJ, Moore EE, Biffl WL, Johnson JL, Silliman CC. Increased rate of infection associated with transfusion of old blood after severe injury. Arch Surg. 2002;137(6):711–6; discussion 716–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Hall MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Muszynski, J.A., Frazier, W.J., Hall, M.W. (2014). Pro-inflammatory and Anti-inflammatory Mediators in Critical Illness and Injury. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6362-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6362-6_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6361-9

  • Online ISBN: 978-1-4471-6362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics