Skip to main content

Integrins and Ion Channels in Cell Migration: Implications for Neuronal Development, Wound Healing and Metastatic Spread

  • Chapter
Integrins and Ion Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 674))

Abstract

Cell migration is necessary for proper embryonic development and adult tissue remodeling. Its mechanisms determine the physiopathology of processes such as neuronal targeting, inflammation, wound healing and metastatic spread. Crawling of cells onto solid surfaces requires a controlled sequence of cell protrusions and retractions that mainly depends on sophisticated regulation of the actin cytoskeleton, although the contribution of microtubules should not be neglected. This process is triggered and modulated by a combination of diffusible and fixed environmental signals. External cues are sensed and integrated by membrane receptors, including integrins, which transduce these signals into cellular signaling pathways, often centered on the small GTPase proteins belonging to the Rho family. These pathways regulate the coordinated cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachement at the front and rear side of cells finding their way through the extracellular spaces. The overall process involves continuous modulation of cell motility, shape and volume, in which ion channels play major roles. In particular, Ca2+ signals have both global and local regulatory effects on cell motility, because they target the contractile proteins as well as many regulatory proteins.

After reviewing the fundamental mechanisms of eukaryotic cell migration onto solid substrates, we briefly describe how integrin receptors and ion channels are involved in cell movement. We next examine a few processes in which these mechanisms have been studied in depth. We thus illustrate how integrins and K+ channels control cell volume and migration, how intracellular Ca2+ homeostasis affects the motility of neuronal growth cones and what is known about the ion channel roles in epithelial cell migration. These mechanisms are implicated in a variety of pathological processes, such as the disruption of neural circuits and wound healing.

Finally, we describe the interaction between neoplastic cells and their local environment and how derangement of adhesion can lead to metastatic spread. It is likely that the cellular mechanisms controlled by integrin receptors, ion channels or both participate in the entire metastatic process. Until now, however, evidence is limited to a few steps of the metastatic cascade, such as brain tumor invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Johnson A, Lewis J et al. Molecular Biology of the Cell, 5th ed. Garland Science, 2008.

    Google Scholar 

  2. Bray D. Cell Movements: From Molecules to Motility, 2nd ed. Garland Science, 2001.

    Google Scholar 

  3. Zigmond SH. Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 2004; 16:99–105.

    Article  CAS  PubMed  Google Scholar 

  4. dos Remedios CG, Chhabra D, Kekic M et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83:433–473.

    PubMed  Google Scholar 

  5. Lauffenburger DA, Horwitz AF. Cell migration, a physically integrated molecular process. Cell 1996; 84:359–369.

    Article  CAS  PubMed  Google Scholar 

  6. Le Clainche C, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 2008; 88:489–513.

    Article  PubMed  CAS  Google Scholar 

  7. Wiener OD. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 2002; 14:196–202.

    Article  Google Scholar 

  8. Vicente-Manzanares M, Choi CK, Horwitz AR. Integrins in cell migration—the actin connection. J Cell Sci 2009; 122:199–206.

    Article  CAS  PubMed  Google Scholar 

  9. Ridley AJ, Schwartz MA, Burridge K et al. Cell migration: integrating signals from front to back. Science 2003; 302:1704–1709.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng JQ, Poo MM. Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol 2007; 23:375–404.

    Article  CAS  PubMed  Google Scholar 

  11. Ayala R, Shu T, Tsai LH. Trekking across the brain: the journey of neuronal migration. Cell 2007; 128:29–43.

    Article  CAS  PubMed  Google Scholar 

  12. Guan CB, Xu HT, Jin M et al. Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by Slit-2. Cell 2007; 129:385–395.

    Article  CAS  PubMed  Google Scholar 

  13. Fukata M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 2003; 15:590–597.

    Article  CAS  PubMed  Google Scholar 

  14. Dickson BJ. Rho GTPases in growth cone guidance. Curr Opin Neurobiol 2001; 11:103–110.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan XB, Jin M, Xu C et al. Signaling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 2003; 5:38–45.

    Article  CAS  PubMed  Google Scholar 

  16. Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 2007; 10:19–26.

    Article  CAS  PubMed  Google Scholar 

  17. Lammermann T, Bader BL, Monkley SJ et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008; 453:51–55.

    Article  PubMed  CAS  Google Scholar 

  18. Wolf K, Wu YI, Liu Y et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904.

    Google Scholar 

  19. Kiosses WB, Shattil SJ, Pampori N et al. Rac recruits high-affinity integrin alphaVbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 2001; 3:316–320.

    Article  CAS  PubMed  Google Scholar 

  20. Kraynov VS, Chamberlain C, Bokoch GM et al. Localized Rac activation dynamics visualized in living cells. Science 2000; 290:333–337.

    Article  CAS  PubMed  Google Scholar 

  21. Nalbant P, Hodgson L, Kraynov V et al. Activation of endogenous Cdc42 visualized in living cells. Science 2004; 305:1615–1619.

    Article  CAS  PubMed  Google Scholar 

  22. Galbraith CG, Yamada KM, Galbraith JA. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 2007; 315:992–995.

    Article  CAS  PubMed  Google Scholar 

  23. Choi CK, Vicente-Manzanares M, Zareno J. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 2008; 10:1039–1050.

    Article  CAS  PubMed  Google Scholar 

  24. Butler B, Gao C, Mersich AT et al. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr Biol 2006; 16:242–251.

    Article  CAS  PubMed  Google Scholar 

  25. Goldfinger LE, Han J, Kiosses WB et al. Spatial restriction of alpha4 integrin phosphorylation regulates lamellipodial stability and alpha4beta1 dependent cell migration. J Cell Biol 2003; 162:731–741.

    Article  CAS  PubMed  Google Scholar 

  26. Lee J, Ishihara A, Oxford G et al. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 1999; 400:382–386.

    Article  CAS  PubMed  Google Scholar 

  27. Glading A, Lauffenburger DA, Wells A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol 2002; 12:46–54.

    Article  CAS  PubMed  Google Scholar 

  28. Schwab A, Hanley P, Fabian A et al. Potassium channels keep mobile cells on the go. Physiology 2008; 23:212–220.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193–277.

    Article  CAS  PubMed  Google Scholar 

  30. Schwab A, Nechyporuk-Zloy V, Fabian A et al. Cells move when ions and water flow. Pflugers Arch 2007; 453:421–432.

    Article  CAS  PubMed  Google Scholar 

  31. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med 2008; 233:779–791.

    Article  CAS  Google Scholar 

  32. Pedersen SF, Hoffmann EK, Mills JW. The cytoskeleton and cell volume regulation. Comp Biochem Physiol A 2001; 130:385–399.

    CAS  Google Scholar 

  33. Tian L, Chen L, McClafferty H et al. A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. FASEB J 2006; 20:2588–2590.

    Article  CAS  PubMed  Google Scholar 

  34. Williams MR, Markey JC, Doczi MA et al. An essential role for cortactin in the modulation of the potassium channel Kv1.2. Proc Natl Acad Sci USA 2007; 104:17412–17417.

    Article  CAS  PubMed  Google Scholar 

  35. Rezzonico R, Cayatte C, Bourget-Ponzio I et al. Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res 2003; 18:1863–1871.

    Article  CAS  PubMed  Google Scholar 

  36. Wei J-F, Wei L, Zhou X et al. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol 2008; 217:544–557.

    Article  CAS  PubMed  Google Scholar 

  37. Arcangeli A, Becchetti A. Complex functional interaction between integrin receptors and ion channels. Trends Cell Biol 2006; 16:631–639.

    Article  CAS  PubMed  Google Scholar 

  38. Vandenberg CA. Integrins step up the pace of cell migration through polyamines and potassium channels. Proc Natl Acad Sci (USA) 2008; 105:7109–7110.

    Article  CAS  Google Scholar 

  39. Liu S, Slepak M, Ginsberg MH. Binding of paxillin to the α9 integrin cytoplasmic domain inhibits cell spreading. J Biol Chem 2001; 276:37086–37092.

    Article  CAS  PubMed  Google Scholar 

  40. Han J, Rose DM, Woodside DG et al. Integrin alpha 4 beta 1-dependent T-cell migration requires both phosphorylation and dephosphorylation of the alpha 4 cytoplasmic domain to regulate the reversible binding of paxillin. J Biol Chem 2003; 278:34845–34853.

    Article  CAS  PubMed  Google Scholar 

  41. Rose DM, Alon R, Ginsberg MH. Integrin modulation and signaling in leukocyte adhesion and migration. Immunol Rev 2007; 218:126–134.

    Article  CAS  PubMed  Google Scholar 

  42. Young BA, Taooka Y, Liu S et al. The cytoplasmic domain of the integrin α9 subunit requires the adaptor protein paxillin to inhibit cell spreading but promotes cell migration in a paxillin-independent manner. Mol Biol Cell 2001; 12:3214–3225.

    CAS  PubMed  Google Scholar 

  43. deHart G-W, Jin T, McCloskey DE et al. The α9β1 integrin enhances cell migration by polyaminemediated modulation of an inward-rectifier potassium channel. Proc Natl Acad Sci (USA) 2008; 105:7188–7193.

    Article  CAS  Google Scholar 

  44. Ray RM, McCormack SA, Covington C et al. The requirement for polyamines for intestinal epithelial cell migration is mediated through Rac1. J Biol Chem 2003; 278:13039–13046.

    Article  CAS  PubMed  Google Scholar 

  45. Chen C, Young BA, Coleman CS et al. Spermidine/spermine N1-acetyltransferase specifically binds to the integrin a9 subunit cytoplasmic domain and enhances cell migration. J Cell Biol 2004; 167:161–170.

    Article  CAS  PubMed  Google Scholar 

  46. Pegg AE. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 2008; 294:E995–E1010.

    Article  CAS  PubMed  Google Scholar 

  47. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the nonneuronal cholinergic system in humans. Br J Pharmacol 2008; 154:1558–1571.

    Article  CAS  PubMed  Google Scholar 

  48. Chernyavsky AI, Arredondo J, Marubio LM et al. Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptors subtypes. J Cell Sci 2004; 117:5665–5679.

    Article  CAS  PubMed  Google Scholar 

  49. McCaig CD, Raynicek AM, Song B et al. Controlling cell behaviour electrically: current views and future potential. Physiol Rev 2005; 85:943–978.

    Article  PubMed  Google Scholar 

  50. Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 1996; 109:199–207.

    CAS  PubMed  Google Scholar 

  51. Luther PW, Peng HB. Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields. J Cell Biol 1985; 100:235–244.

    Article  CAS  PubMed  Google Scholar 

  52. Peng HB, Baker LP, Dai Z. A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in cultured Xenopus muscle cells. J Cell Biol 1993; 120:197–204.

    Article  CAS  PubMed  Google Scholar 

  53. Chernyavsky AI, Arredondo J, Karlsson E et al. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J Biol Chem 2005; 280:39220–39228.

    Article  CAS  PubMed  Google Scholar 

  54. Chernyavsky AI, Arredondo J, Qian J et al. Coupling of ionic events to protein kinase signaling cascades upon activation of a7 nicotinic receptor. Cooperative regulation of α2-integrin expression and Rho-kinase activity. J Biol Chem 2009; 284:22140–22148.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao M, Song B, Pu J et al. Electric signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 2006; 442:457–460.

    Article  CAS  PubMed  Google Scholar 

  56. Spitzer NC. Electrical activity in early neuronal development. Nature 2006; 444:707–712.

    Article  CAS  PubMed  Google Scholar 

  57. Albritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 1992; 258:1812–1815.

    Article  Google Scholar 

  58. Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci 1992; 15:303–308.

    Article  CAS  PubMed  Google Scholar 

  59. Kasai H, Petersen OH. Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 1994; 17:95–100.

    Article  CAS  PubMed  Google Scholar 

  60. Leckie C, Empson R, Becchetti A et al. The NO pathway acts late during the fertilization response in sea urchin eggs. J Biol Chem 2003; 278:12247–12254.

    Article  CAS  PubMed  Google Scholar 

  61. Raymond CR, Redman SJ. Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol 2006; 570:97–111.

    Article  CAS  PubMed  Google Scholar 

  62. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1:11–21.

    Article  CAS  PubMed  Google Scholar 

  63. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005; 757–810.

    Google Scholar 

  64. Tsien RY. Fluorescent probes of cell signaling. Annu Rev Neurosci 1989; 12:227–253.

    Article  CAS  PubMed  Google Scholar 

  65. Myiawaki A, Llopis J, Heim R et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997; 388:882–887.

    Article  CAS  Google Scholar 

  66. Brundage RA, Fogarty KE, Tuft RA et al. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 1991; 254:703–706.

    Article  CAS  PubMed  Google Scholar 

  67. Laffafian I, Hallett MB. Does cytosolic free Ca2+ signal neutrophil chemotaxis in response to formylated chemotactic peptide? J Cell Sci 1995; 108:3199–3205.

    CAS  PubMed  Google Scholar 

  68. Xu HT, Yuan XB, Guan CB et al. Calcium signaling in chemorepellant Slit2-dependent regulation of neuronal migration. Proc Natl Acad Sci USA 2004; 101:4296–4301.

    Article  CAS  PubMed  Google Scholar 

  69. Blaser H, Reichman-Fried M, Castanon I et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 2006; 11:613–627.

    Article  CAS  PubMed  Google Scholar 

  70. Kater SB, Mattson MP, Cohan C et al. Calcium regulation of the neuronal growth cone Trends Neurosci 1988; 11:315–321.

    Article  CAS  PubMed  Google Scholar 

  71. Gomez TM, Zheng JQ. The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci 2006; 7:115–125.

    Article  CAS  PubMed  Google Scholar 

  72. Robles E, Huttenlocher A, Gomez TM. Filopodial calcium transiente regulate growth cone motility and guidance through local activation of calpain. Neuron 2003; 38:597–609.

    Article  CAS  PubMed  Google Scholar 

  73. Henley JR, Huang KH, Wang D et al. Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 2004; 44:909–916.

    Article  CAS  PubMed  Google Scholar 

  74. Wen Z, Guirland C, Ming GL et al. A CaMKII/calcineurin switch controls the direction of Ca2+-dependent growth cone guidance. Neuron 2004; 43:835–846.

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt JT, Morgan P, Dowell N et al. Myosin light chain phosphorylation and growth cone motility. J Neurobiol 2002; 52:175–188.

    Article  CAS  PubMed  Google Scholar 

  76. Wayman GA, Kaech S, Grant WF et al. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 2004; 24:3786–3794.

    Article  CAS  PubMed  Google Scholar 

  77. Tang F, Kalil K. Netrin-I induces axon branching in developing cortical neurons by frequency-dependent calcium signalling pathways. J Neurosci 2005; 25:6702–6715.

    Article  CAS  PubMed  Google Scholar 

  78. Lautermilch NJ, Spitzer NC. Regulation of calcineurin by growth cone calcium waves controls neurite extension. J Neurosci 2000; 20:315–325.

    CAS  PubMed  Google Scholar 

  79. Dawson TM, Sasaki M, Golzales-Zulueta M et al. Regulation of neuronal nitric oxide synthase and identification of novel nitric oxide signalling pathways. Prog Brain Res 1998; 118:3–11.

    Article  CAS  PubMed  Google Scholar 

  80. Aspenstrom P. Integration of signalling pathways regulated by small GTPases and calcium. Biochem Biophys Acta 2004; 1742:51–58.

    Article  PubMed  CAS  Google Scholar 

  81. Fleming IN, Elliott CM, Buchanan FG et al. Ca2+/calmodulin-dependent protein kinase II regulates TiamI by reversible protein phosphorylation. J Biol Chem 1999; 274:12753–12758.

    Article  CAS  PubMed  Google Scholar 

  82. Price LS, Langeslag M, ten Klooster JP et al. Calcium signalling regulates translocation and activation of Rac. J Biol Chem 2003; 278:39413–39421.

    Article  CAS  PubMed  Google Scholar 

  83. Woo S, Gomez TM. Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J Neurosci 2006; 26:1418–1428.

    Article  CAS  PubMed  Google Scholar 

  84. Broussard J A, Webb DJ, Kaverina I. Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 2008; 20:85–90.

    Article  CAS  PubMed  Google Scholar 

  85. Ezratty EJ, Partridge MA, Gundersen GG. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 2005; 7:581–590.

    Article  CAS  PubMed  Google Scholar 

  86. Panicker AK, Buhusi M, Erickson A et al. Endocytosis of beta1 integrins is an early event in migration promoted by the cell adhesion molecule L1. Exp Cell Res 2006; 312:299–307.

    CAS  PubMed  Google Scholar 

  87. Ooashi N, Futatsugi A, Yoshihara F et al. Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3. J Cell Biol 2005; 170:1159–1167.

    Article  CAS  PubMed  Google Scholar 

  88. Itoh K, Stevens B, Schachner M et al. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 1995; 270:1369–1372.

    Article  CAS  PubMed  Google Scholar 

  89. Hanson MG, Landmesser LT. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 2004; 43:687–701.

    Article  CAS  PubMed  Google Scholar 

  90. Nishimune H, Sanes JR, Carlson SS. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminal. Nature 2004; 432:580–587.

    Article  CAS  PubMed  Google Scholar 

  91. Sann SB, Xu L, Nishimune H et al. Neurite outgrowth and in vivo sensory innervation mediated by a Cav2.2-laminin β2 stop signal. J Neurosci 2008; 28:2366–2374.

    Article  CAS  PubMed  Google Scholar 

  92. Jacques-Fricke BT, Seow Y, Gottlieb PA et al. Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J Neurosci 2006; 26:5656–5664.

    Article  CAS  PubMed  Google Scholar 

  93. Brackenbury WJ, Davis TH, Chen C et al. Voltage-gated Na+ channel β1 subunit-mediated neurite outgrowth requires Fyn kinase and contributes to postnatal CNS development in vivo. J Neurosci 2008; 28:3246–3256.

    Article  CAS  PubMed  Google Scholar 

  94. Grimes JA, Fraser SP, Stephens GJ et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995; 369:290–294.

    Article  CAS  PubMed  Google Scholar 

  95. Diss JK, Fraser SP, Djamgoz MB. Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 2004; 33:180–193.

    Article  CAS  PubMed  Google Scholar 

  96. Comoglio PM, Trusolino L. Cancer: the matrix is now in control. Nat Med 2005; 11:1156–1159.

    Article  CAS  PubMed  Google Scholar 

  97. Girieca L, Ruegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 2008; 130:1091–1103.

    Article  CAS  Google Scholar 

  98. Bhowmick NA, Moses HL. Tumor-stroma interactions. Curr Opin Genet Dev 2005; 15:97–101.

    Article  CAS  PubMed  Google Scholar 

  99. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9:669–676.

    Article  CAS  PubMed  Google Scholar 

  100. Radisky DC, Levy DD, Littlepage LE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436:123–127.

    Article  CAS  PubMed  Google Scholar 

  101. List K, Szabo R, Molinolo A et al. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 2005; 19:1934–1950.

    Article  CAS  PubMed  Google Scholar 

  102. Stefanidakis M, Koivunen E. Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 2006; 108:1441–1450.

    Article  CAS  PubMed  Google Scholar 

  103. Fidler IJ. The pathogenesis of cancer metastasis: the’ seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3:453–458.

    Article  CAS  PubMed  Google Scholar 

  104. Weinberg RA. The Biology of Cancer. Garland Science, New York: 2006.

    Google Scholar 

  105. Maher EA, Furnari FB, Bachoo RM et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001; 15:1311–1333.

    Article  CAS  PubMed  Google Scholar 

  106. DeAngelis LM. Chemotherapy for brain tumors—A new beginning. N Engl J Med 2005; 1036–1038.

    Google Scholar 

  107. Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 2005; 23:2411–2422.

    Article  CAS  PubMed  Google Scholar 

  108. Stupp R, Mason WP, van den Bent MJ et al. European organisation for research and treatment of cancer brain tumor and radiotherapy groups radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352:987–996.

    Article  CAS  PubMed  Google Scholar 

  109. Giese A, Bjerkvig R, Berens ME et al. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 2003; 21:1624–1636.

    Article  CAS  PubMed  Google Scholar 

  110. Lefranc F, Kiss R. The sodium pump a1 subunit as a potential target to combat apoptosis-resistant glioblastomas. Neoplasia 2008; 10:198–206.

    CAS  PubMed  Google Scholar 

  111. Olsen ML, Sontheimer H. Voltage activated ion channels in glial cells. In: Ransom BR, Kettenmann H, eds. Neuroglia. Oxford: Oxford University Press, 2005.

    Google Scholar 

  112. Kimelberg HK, Macvicar BA, Sontheimer H. Anion channels in astrocytes: biophysics, pharmacology and function. Glia 2006; 54:747–757.

    Article  PubMed  Google Scholar 

  113. Theodosis DT, Poulain DA, Oliet SHR. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 2008; 88:983–1008.

    Article  CAS  PubMed  Google Scholar 

  114. Papadopoulos MC, Saadoun S, Verkman AS. Aquaporins and cell migration. Pflugers Arch 2008; 456:693–700.

    Article  CAS  PubMed  Google Scholar 

  115. Bordey A, Sontheimer H. Postnatal development of ionic currents in rat hippocampal astrocytes in situ. J Neurophysiol 1997; 78:461–477.

    CAS  PubMed  Google Scholar 

  116. MacFarlane SN, Sontheimer H. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 2000; 30:39–48.

    Article  CAS  PubMed  Google Scholar 

  117. Kofuji P, Ceelen P, Zahs KR et al. Genetic inactivation of an inwardly rectifying potassium channel (Kir 4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 2000; 20:5733–5740.

    CAS  PubMed  Google Scholar 

  118. Olsen ML, Hishigamori H, Campbell SL et al. Functional expression of Kir 4.1 channels in spinal cord astrocytes. Glia 2006; 53:516–528.

    Article  CAS  PubMed  Google Scholar 

  119. Chittajallu R, Chen Y, Wang H et al. Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci USA 2002; 99:2350–2355.

    Article  CAS  PubMed  Google Scholar 

  120. Higashimori H, Sontheimer H. Role of Kir 4.1 channels in growth control of glia. Glia 2007; 55:1668–1679.

    Article  PubMed  Google Scholar 

  121. Olsen ML, Schade S, Lyons SA et al. Expression of voltage-gated chloride channels in human glioma cells. J Neurosci 2003; 23:5572–5582.

    CAS  PubMed  Google Scholar 

  122. Olsen ML, Weaver AK, Ritch PS et al. Modulation of glioma BK channels via erbB2. J Neurosci Res 2005; 81:179–189.

    Article  CAS  PubMed  Google Scholar 

  123. Ross SB, Fuller CM, Bubien JK et al. Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells. Am J Physiol Cell Physiol 2007; 293:C1181–C1185.

    Article  CAS  PubMed  Google Scholar 

  124. Masi A, Becchetti A, Restano-Cassulini R et al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Brit J Cancer 2005; 93:781–792.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Becchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Becchetti, A., Arcangeli, A. (2010). Integrins and Ion Channels in Cell Migration: Implications for Neuronal Development, Wound Healing and Metastatic Spread. In: Becchetti, A., Arcangeli, A. (eds) Integrins and Ion Channels. Advances in Experimental Medicine and Biology, vol 674. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6066-5_10

Download citation

Publish with us

Policies and ethics