Skip to main content

Part of the book series: Focus on Structural Biology ((FOSB,volume 7))

Abstract

The protein alpha-synuclein is implicated in the etiology of both sporadic and hereditary Parkinson’s disease. Structural studies of both the intrinsically disordered free state of the protein and of more ordered states, adopted when alpha-synuclein self assembles into fibrils or binds to lipid membranes or detergent micelles, have begun to provide insights into factors that likely influence both the pathological aggregation of the protein and its normal functions. Residual secondary structure and transient long-range interactions within the free state can be detected and may influence alpha-synuclein aggregation pathways. Structure within the amyloid fibril form of alpha-synuclein can also provide clues regarding the assembly pathways of the protein. Alpha-synuclein folds upon binding to lipid membranes and the experimentally determined topology of the bound protein likely mediates its physiological functions. The influence of disease-linked mutations on the structural properties of the free, fibrillar, and bound states has also been evaluated in order to examine the basis for altered aggregation kinetics and possible functional impairments of the mutant proteins. Comparative structural studies of the other human synuclein family members, β-synuclein and γ-synuclein have also been performed to clarify features that differentiate them from alpha-synuclein in both pathological and functional contexts. This chapter provides an up to date review of structural studies of the human synuclein family and of the implications of these studies for understanding synuclein pathways in biology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maroteaux L, JT Campanelli, RH Scheller (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815

    PubMed  CAS  Google Scholar 

  2. Ueda K, H Fukushima, E Masliah, Y Xia, A Iwai, M Yoshimoto, DA Otero, J Kondo, Y Ihara, T Saitoh (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    PubMed  CAS  Google Scholar 

  3. Tobe T, S Nakajo, A Tanaka, A Mitoya, K Omata, K Nakaya, M Tomita, Y Nakamura (1992) Cloning and characterization of the cDNA encoding a novel brain-specific 14-kDa protein. J Neurochem 59:1624–1629

    PubMed  CAS  Google Scholar 

  4. Jakes R, MG Spillantini, M Goedert (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32

    PubMed  CAS  Google Scholar 

  5. Ji H, YE Liu, T Jia, M Wang, J Liu, G Xiao, BK Joseph, C Rosen, YE Shi (1997) Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res. 57:759–764

    PubMed  CAS  Google Scholar 

  6. George JM, H Jin, WS Woods, DF Clayton (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372.

    PubMed  CAS  Google Scholar 

  7. Segrest JP, MK Jones, H De Loof, CG Brouillette, YV Venkatachalapathi, GM Anantharamaiah (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33:141–166

    PubMed  CAS  Google Scholar 

  8. Polymeropoulos MH, JJ Higgins, LI Golbe, WG Johnson, SE Ide, G Di Iorio, G Sanges, ES Stenroos, LT Pho, AA Schaffer et al. (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274:1197–1199

    PubMed  CAS  Google Scholar 

  9. Polymeropoulos MH, C Lavedan, E Leroy, SE Ide, A Dehejia, A Dutra, B Pike, H Root, J Rubenstein, R Boyer et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    PubMed  CAS  Google Scholar 

  10. Kruger R, W Kuhn, T Muller, D Woitalla, M Graeber, S Kosel, H Przuntek, JT Epplen, L Schols, O Riess (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    PubMed  CAS  Google Scholar 

  11. Zarranz JJ, J Alegre, JC Gomez-Esteban, E Lezcano, R Ros, I Ampuero, L Vidal, J Hoenicka, O Rodriguez, B Atares et al. (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    PubMed  CAS  Google Scholar 

  12. Singleton AB, M Farrer, J Johnson, A Singleton, S Hague, J Kachergus, M Hulihan, T Peuralinna, A Dutra, R Nussbaum et al. (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    PubMed  CAS  Google Scholar 

  13. Chartier-Harlin MC, J Kachergus, C Roumier, V Mouroux, X Douay, S Lincoln, C Levecque, L Larvor, J Andrieux, M Hulihan et al. (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    PubMed  CAS  Google Scholar 

  14. Lavedan C, S Buchholtz, G Auburger, RL Albin, A Athanassiadou, J Blancato, JA Burguera, RE Ferrell, V Kostic, E Leroy et al. (1998) Absence of mutation in the beta- and gamma-synuclein genes in familial autosomal dominant Parkinson’s disease. DNA Res 5:401–402

    PubMed  CAS  Google Scholar 

  15. Lincoln S, R Crook, MC Chartier-Harlin, K Gwinn-Hardy, M Baker, V Mouroux, F Richard, E Becquet, P Amouyel, A Destee, J Hardy, M Farrer (1999) No pathogenic mutations in the beta-synuclein gene in Parkinson’s disease. Neurosci Lett 269:107–109

    PubMed  CAS  Google Scholar 

  16. Brighina L, NU Okubadejo, NK Schneider, TG Lesnick, M de Andrade, JM Cunningham, MJ Farrer, SJ Lincoln, WA Rocca, DM Maraganore (2007) Beta-synuclein gene variants and Parkinson’s disease: A preliminary case-control study. Neurosci Lett 420:229–234

    PubMed  CAS  Google Scholar 

  17. Spillantini MG, ML Schmidt, VM Lee, JQ Trojanowski, R Jakes, M Goedert (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    PubMed  CAS  Google Scholar 

  18. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    PubMed  CAS  Google Scholar 

  19. Arrasate M, S Mitra, ES Schweitzer, MR Segal, S Finkbeiner (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    PubMed  CAS  Google Scholar 

  20. Abeliovich A, Y Schmitz, I Farinas, D Choi-Lundberg, WH Ho, PE Castillo, N Shinsky, JM Verdugo, M Armanini, A Ryan et al. (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    PubMed  CAS  Google Scholar 

  21. Cabin DE, K Shimazu, D Murphy, NB Cole, W Gottschalk, KL McIlwain, B Orrison, A Chen, CE Ellis, R Paylor et al. (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22:8797–8807.

    PubMed  CAS  Google Scholar 

  22. Martin, ED, C Gonzalez-Garcia, M Milan, I Farinas, V Cena (2004) Stressor-related impairment of synaptic transmission in hippocampal slices from alpha-synuclein knockout mice. Eur J Neurosci 20:3085–3091

    PubMed  Google Scholar 

  23. Liu S, I Ninan, I Antonova, F Battaglia, F Trinchese, A Narasanna, N Kolodilov, W Dauer, RD Hawkins, O Arancio (2004) alpha-Synuclein produces a long-lasting increase in neurotransmitter release. EMBO J 23:4506–4516

    PubMed  CAS  Google Scholar 

  24. Murphy DD, SM Rueter, JQ Trojanowski, VM Lee (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220

    PubMed  CAS  Google Scholar 

  25. Chandra S, F Fornai, HB Kwon, U Yazdani, D Atasoy, X Liu, RE Hammer, G Battaglia, DC German, PE Castillo et al. (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101:14966–14971

    PubMed  CAS  Google Scholar 

  26. Chandra S, G Gallardo, R Fernandez-Chacon, OM Schluter, TC Sudhof (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell. 123:383–396

    PubMed  CAS  Google Scholar 

  27. Cooper AA, AD Gitler, A Cashikar, CM Haynes, KJ Hill, B Bhullar, K Liu, K Xu, KE Strathearn, F Liu et al. (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    PubMed  CAS  Google Scholar 

  28. Gitler AD, BJ Bevis, J Shorter, KE Strathearn, S Hamamichi, LJ Su, KA Caldwell, GA Caldwell, JC Rochet, JM McCaffery et al. (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA 105:145–150

    PubMed  CAS  Google Scholar 

  29. Jenco JM, A Rawlingson, B Daniels, AJ Morris (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37:4901–4909

    PubMed  CAS  Google Scholar 

  30. McDermott, M, MJ Wakelam, AJ Morris (2004) Phospholipase D Biochem Cell Biol 82:225–253

    CAS  Google Scholar 

  31. Yu S, X Li, G Liu, J Han, C Zhang, Y Li, S Xu, C Liu, Y Gao, H Yang, K Ueda, P Chan (2007) Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. NeuroScience 145:539–555

    PubMed  CAS  Google Scholar 

  32. McLean PJ, S Ribich, BT Hyman (2000) Subcellular localization of alpha-synuclein in primary neuronal cultures: effect of missense mutations. J Neural Transm Suppl 53–63

    Google Scholar 

  33. Goers J, AB Manning-Bog, AL McCormack, IS Millett, S Doniach, DA Di Monte, VN Uversky, AL Fink (2003) Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 42:8465–8471

    PubMed  CAS  Google Scholar 

  34. Kontopoulos E, JD Parvin, MB Feany (2006) Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15:3012–3023

    PubMed  CAS  Google Scholar 

  35. Weinreb PH, W Zhen, AW Poon, KA Conway, PT Lansbury Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    PubMed  CAS  Google Scholar 

  36. Eliezer D, E Kutluay, R Bussell Jr, G Browne (2001) Conformational properties of alpha-synuclein in its free and lipid- associated states. J Mol Biol. 307:1061–1073

    PubMed  CAS  Google Scholar 

  37. Bussell R Jr, D Eliezer (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of alpha-synuclein. J Biol Chem 276:45996–46003.

    PubMed  CAS  Google Scholar 

  38. Sung YH, D Eliezer (2007) Residual structure, backbone dynamics, and interactions within the synuclein family. J Mol Biol 372:689–707

    PubMed  CAS  Google Scholar 

  39. Bertoncini CW, RM Rasia, GR Lamberto, A Binolfi, M Zweckstetter, C Griesinger, CO Fernandez (2007) Structural characterization of the intrinsically unfolded protein beta-synuclein, a natural negative regulator of alpha-synuclein aggregation. J Mol Biol 372:708–722

    PubMed  CAS  Google Scholar 

  40. Marsh JA, VK Singh, Z Jia, and JD Forman-Kay (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804

    PubMed  CAS  Google Scholar 

  41. Conway KA, SJ Lee, JC Rochet, TT Ding, RE Williamson, PT Lansbury Jr. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    PubMed  CAS  Google Scholar 

  42. Der-Sarkissian A, CC Jao, J Chen, R Langen (2003) Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J Biol Chem 278:37530–37535

    PubMed  CAS  Google Scholar 

  43. Del Mar C, EA Greenbaum, L Mayne, SW Englander, VL Woods Jr (2005) Structure and properties of alpha-synuclein and other amyloids determined at the amino acid level. Proc Natl Acad Sci USA 102:15477–15482

    PubMed  CAS  Google Scholar 

  44. Heise H, W Hoyer, S Becker, OC Andronesi, D Riedel, M Baldus (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR Proc Natl Acad Sci USA 102:15871–15876

    CAS  Google Scholar 

  45. Dedmon MM, K Lindorff-Larsen, J Christodoulou, M Vendruscolo, CM Dobson (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127:476–477

    PubMed  CAS  Google Scholar 

  46. Bertoncini CW, YS Jung, CO Fernandez, W Hoyer, C Griesinger, TM Jovin, M Zweckstetter (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci USA 102:1430–1435

    PubMed  CAS  Google Scholar 

  47. Goers J, VN Uversky, AL Fink (2003) Polycation-induced oligomerization and accelerated fibrillation of human alpha-synuclein in vitro. Protein Sci 12:702–707

    PubMed  CAS  Google Scholar 

  48. Antony T, W Hoyer, D Cherny, G Heim, TM Jovin, V Subramaniam (2003) Cellular polyamines promote the aggregation of alpha-synuclein. J Biol Chem 278:3235–3240

    PubMed  CAS  Google Scholar 

  49. Fernandez CO, W Hoyer, M Zweckstetter, EA Jares-Erijman, V Subramaniam, C Griesinger, TM Jovin (2004) NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J 23:2039–2046

    PubMed  CAS  Google Scholar 

  50. Rasia RM, CW Bertoncini, D Marsh, W Hoyer, D Cherny, M Zweckstetter, C Griesinger, TM Jovin, CO Fernandez (2005) Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci USA 102:4294–4299

    PubMed  CAS  Google Scholar 

  51. Sung YH, C Rospigliosi, D Eliezer (2006) NMR mapping of copper binding sites in alpha-synuclein. Biochim Biophys Acta 1764:5–12

    PubMed  CAS  Google Scholar 

  52. Bertoncini CW, CO Fernandez, C Griesinger, TM Jovin, M Zweckstetter (2005) Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 280:30649–30652

    PubMed  CAS  Google Scholar 

  53. Uversky VN, J Li, P Souillac, IS Millett, S Doniach, R Jakes, M Goedert, AL Fink (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978

    PubMed  CAS  Google Scholar 

  54. Morar AS, A Olteanu, GB Young, GJ Pielak (2001) Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c. Protein Sci 10:2195–2199

    PubMed  CAS  Google Scholar 

  55. Lee JC, R Langen, PA Hummel, HB Gray, JR Winkler (2004) Alpha-synuclein structures from fluorescence energy-transfer kinetics: implications for the role of the protein in Parkinson’s disease. Proc Natl Acad Sci USA 101:16466–16471

    PubMed  CAS  Google Scholar 

  56. Lee JC, HB Gray, JR Winkler (2005) Tertiary contact formation in alpha-synuclein probed by electron transfer. J Am Chem Soc. 127:16388–16389

    PubMed  CAS  Google Scholar 

  57. Lee JC, BT Lai, JJ Kozak, HB Gray, JR Winkler (2007) Alpha-synuclein tertiary contact dynamics. J Phys Chem B 111:2107–2112

    PubMed  CAS  Google Scholar 

  58. Biere AL, SJ Wood, J Wypych, S Steavenson, Y Jiang, D Anafi, FW Jacobsen, MA Jarosinski, GM Wu, JC Louis et al. (2000) Parkinson’s disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 275:34574–34579

    PubMed  CAS  Google Scholar 

  59. Paleologou KE, AW Schmid, CC Rospigliosi, HY Kim, GR Lamberto, RA Fredenburg, PT Lansbury Jr, CO Fernandez, D Eliezer, M Zweckstetter et al. (2008) Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem 283:16895–16905

    PubMed  CAS  Google Scholar 

  60. Eliezer D (2008) Protein folding and aggregation in in vitro models of Parkinson’s disease: Structure and function of α–synuclein. In: Nass R, Prezedborski S (eds) Parkinson’s disease: molecular and therapeutic insights from model systems, Academic Press, New York. pp. 575–595

    Google Scholar 

  61. Conway KA, JD Harper, PT Lansbury Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–63

    PubMed  CAS  Google Scholar 

  62. Serpell LC, J Berriman, R Jakes, M Goedert, RA Crowther (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid- like cross-beta conformation. Proc Natl Acad Sci USA 97:4897–4902

    PubMed  CAS  Google Scholar 

  63. Serpell LC, M Sunde, CC Blake (1997) The molecular basis of amyloidosis. Cell Mol Life Sci 53:871–887.

    PubMed  CAS  Google Scholar 

  64. Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR Q Rev Biophys. 39:1–55

    CAS  Google Scholar 

  65. Margittai M, R Langen (2006) Spin labeling analysis of amyloids and other protein aggregates. Methods Enzymol 413:122–139

    PubMed  CAS  Google Scholar 

  66. Chen M, M Margittai, J Chen, R Langen (2007) Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 282:24970–24979

    PubMed  CAS  Google Scholar 

  67. Kloepper KD, KL Hartman, DT Ladror, CM Rienstra (2007) Solid-state NMR spectroscopy reveals that water is nonessential to the core structure of alpha-synuclein fibrils. J Phys Chem B 111:13353–13356

    PubMed  CAS  Google Scholar 

  68. Vilar M, HT Chou, T Luhrs, SK Maji, D Riek-Loher, R Verel, G Manning, H Stahlberg, R Riek (2008) The fold of alpha-synuclein fibrils. Proc Natl Acad Sci USA 105:8637–8642

    PubMed  CAS  Google Scholar 

  69. Heise H, MS Celej, S Becker, D Riedel, A Pelah, A Kumar, TM Jovin, M Baldus (2008) Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alpha-synuclein. J Mol Biol 380:444–450

    PubMed  CAS  Google Scholar 

  70. Petkova AT, Y Ishii, JJ Balbach, ON Antzutkin, RD Leapman, F Delaglio, R Tycko (2002) A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR Proc Natl Acad Sci USA 99:16742–16747

    CAS  Google Scholar 

  71. Luhrs T, C Ritter, M Adrian, D Riek-Loher, B Bohrmann, H Dobeli, D Schubert, R Riek (2005) 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci USA 102:17342–17347

    PubMed  CAS  Google Scholar 

  72. Wasmer C, A Lange, H Van Melckebeke, AB Siemer, R Riek, BH Meier (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    PubMed  CAS  Google Scholar 

  73. Masliah E, E Rockenstein, I Veinbergs, M Mallory, M Hashimoto, A Takeda, Y Sagara, A Sisk, L Mucke (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    PubMed  CAS  Google Scholar 

  74. Feany MB, WW Bender (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    PubMed  CAS  Google Scholar 

  75. Lakso M, S Vartiainen, AM Moilanen, J Sirvio, JH Thomas, R Nass, RD Blakely, G Wong (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86:165–172

    PubMed  CAS  Google Scholar 

  76. Payton JE, RJ Perrin, WS Woods, JM George (2004) Structural determinants of PLD2 inhibition by alpha-synuclein. J Mol Biol 337:1001–1009

    PubMed  CAS  Google Scholar 

  77. Woods WS, JM Boettcher, DH Zhou, KD Kloepper, KL Hartman, DT Ladror, Z Qi, CM Rienstra, JM George (2007) Conformation-specific binding of alpha-synuclein to novel protein partners detected by phage display and NMR spectroscopy. J Biol Chem 282:34555–34567

    PubMed  CAS  Google Scholar 

  78. Davidson WS, A Jonas, DF Clayton, JM George (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    PubMed  CAS  Google Scholar 

  79. Jo E, J McLaurin, CM Yip, P St George-Hyslop, PE Fraser (2000) alpha-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334

    PubMed  CAS  Google Scholar 

  80. Perrin RJ, WS Woods, DF Clayton, JM George (2000) Interaction of human alpha-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 275:34393–34398.

    PubMed  CAS  Google Scholar 

  81. Davidson WS, K Arnvig-McGuire, A Kennedy, J Kosman, TL Hazlett, A Jonas (1999) Structural organization of the N-terminal domain of apolipoprotein A-I: studies of tryptophan mutants. Biochemistry 38:14387–14395

    PubMed  CAS  Google Scholar 

  82. Bussell R Jr, D Eliezer (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778

    PubMed  CAS  Google Scholar 

  83. Chandra S, X Chen, J Rizo, R Jahn, TC Sudhof (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278:15313–15318

    PubMed  CAS  Google Scholar 

  84. Bussell R Jr, TF Ramlall, D Eliezer (2005) Helix periodicity, topology, and dynamics of membrane-associated alpha-synuclein. Protein Sci 14:862–872

    PubMed  CAS  Google Scholar 

  85. Bisaglia M, I Tessari, L Pinato, M Bellanda, S Giraudo, M Fasano, E Bergantino, L Bubacco, S Mammi (2005) A topological model of the interaction between alpha-synuclein and sodium dodecyl sulfate micelles. Biochemistry 44:329–339

    PubMed  CAS  Google Scholar 

  86. Ulmer TS, A Bax, NB Cole, RL Nussbaum (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280:9595–9603

    PubMed  CAS  Google Scholar 

  87. Borbat P, TF Ramlall, JH Freed, D Eliezer (2006) Inter-helix distances in lysophospholipid micelle-bound alpha-synuclein from pulsed ESR measurements. J Am Chem Soc. 128:10004–10005

    PubMed  CAS  Google Scholar 

  88. Jao CC, A Der-Sarkissian, J Chen, R Langen (2004) Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci USA 101:8331–8336

    PubMed  CAS  Google Scholar 

  89. Ferreon AC, AA Deniz (2007) Alpha-synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation. Biochemistry 46:4499–4509

    PubMed  CAS  Google Scholar 

  90. Jensen PH, MS Nielsen, R Jakes, CG Dotti, M Goedert (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294

    PubMed  CAS  Google Scholar 

  91. Jo E, N Fuller, RP Rand, P St George-Hyslop, PE Fraser (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P alpha-synuclein. J Mol Biol 315:799–807

    PubMed  CAS  Google Scholar 

  92. Choi W, S Zibaee, R Jakes, LC Serpell, B Davletov, RA Crowther, M Goedert (2004) Mutation E46K increases phospholipid binding and assembly into filaments of human alpha-synuclein. FEBS Lett 576:363–368

    PubMed  CAS  Google Scholar 

  93. Bussell R Jr, D Eliezer (2004) Effects of Parkinson’s disease-linked mutations on the structure of lipid-associated alpha-synuclein. Biochemistry 43:4810–4818

    PubMed  CAS  Google Scholar 

  94. Ulmer TS, A Bax (2005) Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. J Biol Chem 280:43179–43187

    PubMed  CAS  Google Scholar 

  95. Fredenburg RA, C Rospigliosi, RK Meray, JC Kessler, HA Lashuel, D Eliezer, PT Lansbury Jr (2007) The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 46:7107–7118

    PubMed  CAS  Google Scholar 

  96. Nakajo S, K Tsukada, K Omata, Y Nakamura, K Nakaya (1993) A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 217:1057–1063

    PubMed  CAS  Google Scholar 

  97. Akopian AN, JN Wood (1995) Peripheral nervous system-specific genes identified by subtractive cDNA cloning. J Biol Chem 270:21264–2170

    PubMed  CAS  Google Scholar 

  98. Lavedan C, E Leroy, A Dehejia, S Buchholtz, A Dutra, RL Nussbaum, MH Polymeropoulos (1998) Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet. 103:106–112

    PubMed  CAS  Google Scholar 

  99. Buchman VL, HJ Hunter, LG Pinon, J Thompson, EM Privalova, NN Ninkina, AM Davies (1998) Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 18:9335–9341

    PubMed  CAS  Google Scholar 

  100. Sung YH, D Eliezer (2006) Secondary structure and dynamics of micelle bound beta- and gamma-synuclein. Protein Sci 15:1162–1174

    PubMed  CAS  Google Scholar 

  101. Larsen KE, Y Schmitz, MD Troyer, E Mosharov, P Dietrich, AZ Quazi, M Savalle, V Nemani, FA Chaudhry, RH Edwards et al. (2006) Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26:11915–11922

    PubMed  CAS  Google Scholar 

  102. Yavich L, H Tanila, S Vepsalainen, P Jakala (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24:11165–11170

    PubMed  CAS  Google Scholar 

  103. Fortin DL, VM Nemani, SM Voglmaier, MD Anthony, TA Ryan, RH Edwards (2005) Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci 25:10913–10921

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Eliezer, D. (2009). Synuclein Structure and Function in Parkinson’s Disease. In: Ovádi, J., Orosz, F. (eds) Protein Folding and Misfolding: Neurodegenerative Diseases. Focus on Structural Biology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9434-7_7

Download citation

Publish with us

Policies and ethics