Skip to main content

Perinatal Influences of Valproate on Brain and Behaviour: An Animal Model for Autism

  • Chapter
  • First Online:
Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 29))

Abstract

Valproic acid or valproate (VPA) is an anti-convulsant and mood stabiliser effective in treating epilepsy and bipolar disorders. Although in adults VPA is well tolerated and safe, there is convincing evidence that it has teratogenic properties, ranging from mild neurodevelopmental changes to severe congenital malformations. In particular, studies involving humans and other animals have shown that prenatal exposure to VPA can induce developmental abnormalities reminiscent of autism spectrum disorder (ASD). In this chapter, we discuss the connection between VPA and ASD, evaluate the VPA animal model of ASD, and describe the possible molecular mechanisms underlying VPA’s teratogenic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al Deeb S, Al Moutaery K, Arshaduddin M, Tariq M (2000) Vitamin E decreases valproic acid induced neural tube defects in mice. Neurosci Lett 292:179–182

    CAS  PubMed  Google Scholar 

  • Al-Amin MM, Rahman MM, Khan FR, Zaman F, Reza HM (2015) Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res 286:112–121

    CAS  PubMed  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence?

    Google Scholar 

  • Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40:1423–1430

    PubMed  Google Scholar 

  • Avallone A, Piccirillo MC, Delrio P, Pecori B, Di Gennaro E, Aloj L, Tatangelo F, Valentina D, Granata C, Cavalcanti E (2014) Phase 1/2 study of valproic acid and short-course radiotherapy plus capecitabine as preoperative treatment in low-moderate risk rectal cancer-V-shoRT-R3 (Valproic acid-short RadioTherapy-rectum 3rd trial). BMC Cancer 14:875

    PubMed  PubMed Central  Google Scholar 

  • Banji D, Banji OJ, Abbagoni S, Hayath MS, Kambam S, Chiluka VL (2011) Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res 1410:141–151

    CAS  PubMed  Google Scholar 

  • Baronio D, Castro K, Gonchoroski T, de Melo GM, Nunes GDF, Bambini-Junior V, Gottfried C, Riesgo R (2015) Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PLoS ONE 10:e0116363

    PubMed  PubMed Central  Google Scholar 

  • Bauman MD, Crawley JN, Berman RF (2010) Autism: animal models. eLS

    Google Scholar 

  • Bauman MD, Iosif A-M, Smith SE, Bregere C, Amaral DG, Patterson PH (2014) Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 75:332–341

    CAS  PubMed  Google Scholar 

  • Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77

    CAS  PubMed  Google Scholar 

  • Betancur C, Sakurai T, Buxbaum JD (2009) The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci 32:402–412

    CAS  PubMed  Google Scholar 

  • Bielecka AM, Obuchowicz E (2008) Antiapoptotic action of lithium and valproate. Pharmacol Rep 60:771–782

    CAS  PubMed  Google Scholar 

  • Bittigau P, Sifringer M, Genz K, Reith E, Pospischil D, Govindarajalu S, Dzietko M, Pesditschek S, Mai I, Dikranian K (2002) Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci 99:15089–15094

    CAS  PubMed  Google Scholar 

  • Bolivar VJ, Walters SR, Phoenix JL (2007) Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 176:21–26

    PubMed  Google Scholar 

  • Bollino D, Balan I, Aurelian L (2015) Valproic acid induces neuronal cell death through a novel calpain‐dependent necroptosis pathway. J Neurochem 133:174–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodie SA, Brandes JC (2014) Could valproic acid be an effective anticancer agent? The evidence so far. Expert Rev Anticancer Ther 14:1097–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carew JS, Giles FJ, Nawrocki ST (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269:7–17

    CAS  PubMed  Google Scholar 

  • Chaste P, Klei L, Sanders SJ, Hus V, Murtha MT, Lowe JK, Willsey AJ, Moreno-De-Luca D, Yu TW, Fombonne E, Geschwind D, Grice DE, Ledbetter DH, Mane SM, Martin DM, Morrow EM, Walsh CA, Sutcliffe JS, Martin CL, Beaudet AL, Lord C, State MW, Cook EH, Devlin B (2015) A genome-wide association study of autism using the simons simplex collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry 77:775–784

    PubMed  Google Scholar 

  • Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    CAS  PubMed  Google Scholar 

  • Choi CS, Hong M, Kim KC, Kim J-W, Yang SM, Seung H, Ko MJ, Choi D-H, You JS, Shin CY (2014) Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring. Biomol Ther 22:406

    CAS  Google Scholar 

  • Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard M (2013) Prenatal Valproate Exposure and Risk of Autism Spectrum Disorders and Childhood Autism. JAMA 309:1696–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson AL, Chester N, Kromberg JG (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol 36:361–369

    CAS  PubMed  Google Scholar 

  • Cohen OS, Varlinskaya EI, Wilson CA, Glatt SJ, Mooney SM (2013) Acute prenatal exposure to a moderate dose of valproic acid increases social behavior and alters gene expression in rats. Int J Dev Neurosci 31:740–750

    CAS  PubMed  Google Scholar 

  • Colvert E, Tick B, McEwen F, Stewart C, Curran SR, Woodhouse E, Gillan N, Hallett V, Lietz S, Garnett T (2015a) Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry 72:415–423

    PubMed  PubMed Central  Google Scholar 

  • Colvert E, Tick B, McEwen F, Stewart C, Curran SR, Woodhouse E, Gillan N, Hallett V, Lietz S, Garnett T (2015b) Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry

    Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. In: Biochemical Society Symposia. Portland Press-London, vol 61, pp 1–32

    Google Scholar 

  • Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    CAS  PubMed  Google Scholar 

  • Defoort EN, Kim PM, Winn LM (2006) Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects. Mol Pharmacol 69:1304–1310

    CAS  PubMed  Google Scholar 

  • Devlin B, Cook E, Coon H, Dawson G, Grigorenko E, McMahon W, Minshew N, Pauls D, Smith M, Spence M (2005) Autism and the serotonin transporter: the long and short of it. Mol Psychiatry 10:1110–1116

    CAS  PubMed  Google Scholar 

  • Diav-Citrin O, Shechtman S, Bar-Oz B, Cantrell D, Arnon J, Ornoy A (2008) Pregnancy Outcome after In Utero Exposure to Valproate. CNS Drugs 22:325–334

    CAS  PubMed  Google Scholar 

  • Dufour-Rainfray D, Vourc’h P, Le Guisquet A-M, Garreau L, Ternant D, Bodard S, Jaumain E, Gulhan Z, Belzung C, Andres CR (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470:55–59

    CAS  PubMed  Google Scholar 

  • Dufour-Rainfray D, Vourc’h P, Tourlet S, Guilloteau D, Chalon S, Andres CR (2011) Fetal exposure to teratogens: evidence of genes involved in autism. Neurosci Biobeh Rev 35:1254–1265

    CAS  Google Scholar 

  • Eikel D, Lampen A, Nau H (2006) Teratogenic effects mediated by inhibition of histone deacetylases: evidence from quantitative structure activity relationships of 20 valproic acid derivatives. Chem Res Toxicol 19:272–278

    CAS  PubMed  Google Scholar 

  • Ellegood J, Crawley JN (2015) Behavioral and neuroanatomical phenotypes in mouse models of autism. Neurotherapeutics 12:521–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellegood J, Anagnostou E, Babineau BA, Crawley JN, Lin L, Genestine M, DiCicco-Bloom E, Lai JKY, Foster JA, Penagarikano O, Geschwind DH, Pacey LK, Hampson DR, Laliberte CL, Mills AA, Tam E, Osborne LR, Kouser M, Espinosa-Becerra F, Xuan Z, Powell CM, Raznahan A, Robins DM, Nakai N, Nakatani J, Takumi T, van Eede MC, Kerr TM, Muller C, Blakely RD, Veenstra-VanderWeele J, Henkelman RM, Lerch JP (2015) Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry 20:118–125

    CAS  PubMed  Google Scholar 

  • Ellenbroek B, Cools A (2000) Animal models for the negative symptoms of schizophrenia. Behav Pharmacol 11:223–234

    CAS  PubMed  Google Scholar 

  • Fathe K, Palacios A, Finnell RH (2014) Brief report novel mechanism for valproate-induced teratogenicity. Birth Defects Res A 100:592–597

    CAS  Google Scholar 

  • Fried S, Kozer E, Nulman I, Einarson TR, Koren G (2004) Malformation rates in children of women with untreated epilepsy. Drug Saf 27:197–202

    PubMed  Google Scholar 

  • Fujiki R, Sato A, Fujitani M, Yamashita T (2013) A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons. Cell Death Dis 4:e677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TP, Siegel SJ (2010) Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry 68:1100–1106

    PubMed  PubMed Central  Google Scholar 

  • Geier DA, Kern JK, Geier MR (2010) The biological basis of autism spectrum disorders: Understanding causation and treatment by clinical geneticists. Acta Neurobiol Exp (Wars) 70:209–226

    Google Scholar 

  • Grishina O, Schmoor C, Döhner K, Hackanson B, Lubrich B, May AM, Cieslik C, Müller MJ, Lübbert M (2015) DECIDER: prospective randomized multicenter phase II trial of low-dose decitabine (DAC) administered alone or in combination with the histone deacetylase inhibitor valproic acid (VPA) and all-trans retinoic acid (ATRA) in patients >60 years with acute myeloid leukemia who are ineligible for induction chemotherapy. BMC Cancer 15:430

    PubMed  PubMed Central  Google Scholar 

  • Gurvich N, Berman MG, Wittner BS, Gentleman RC, Klein PS, Green JB (2005) Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 19:1166–1168

    CAS  PubMed  Google Scholar 

  • Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24:271–275

    CAS  PubMed  Google Scholar 

  • Hill DS, Wlodarczyk BJ, Palacios AM, Finnell RH (2010) Teratogenic effects of antiepileptic drugs

    Google Scholar 

  • Hollander E, Soorya L, Wasserman S, Esposito K, Chaplin W, Anagnostou E (2006) Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. Int J Neuropsychopharmacol 9:209–213

    CAS  PubMed  Google Scholar 

  • Hollander E, Chaplin W, Soorya L, Wasserman S, Novotny S, Rusoff J, Feirsen N, Pepa L, Anagnostou E (2010) Divalproex sodium vs placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology 35:990–998

    CAS  PubMed  Google Scholar 

  • Hsia Y, Wong AY, Murphy DG, Simonoff E, Buitelaar JK, Wong IC (2014) Psychopharmacological prescriptions for people with autism spectrum disorder (ASD): a multinational study. Psychopharmacology 231:999–1009

    CAS  PubMed  Google Scholar 

  • Hsieh C-L, Wang H-E, Tsai W-J, Peng C-C, Peng RY (2012) Multiple point action mechanism of valproic acid-teratogenicity alleviated by folic acid, vitamin C, And N-acetylcysteine in chicken embryo model. Toxicology 291:32–42

    CAS  PubMed  Google Scholar 

  • Hsieh CL, Chen KC, Lin PX, Peng CC, Peng RY (2014) Resveratrol and vitamin E rescue valproic acid-induced teratogenicity: the mechanism of action. Clin Exp Pharmacol Physiol 41:210–219

    CAS  PubMed  Google Scholar 

  • Hu J-P, Xie J-W, Wang C-Y, Wang T, Wang X, Wang S-L, Teng W-P, Wang Z-Y (2011) Valproate reduces tau phosphorylation via cyclin-dependent kinase 5 and glycogen synthase kinase 3 signaling pathways. Brain Res Bull 85:194–200

    CAS  PubMed  Google Scholar 

  • Ingram JL, Peckham SM, Tisdale B, Rodier PM (2000) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22:319–324

    CAS  PubMed  Google Scholar 

  • Ivanov M, Barragan I, Ingelman-Sundberg M (2014) Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci 35:384–396

    CAS  PubMed  Google Scholar 

  • Jacob J, Ribes V, Moore S, Constable SC, Sasai N, Gerety SS, Martin DJ, Sergeant CP, Wilkinson DG, Briscoe J (2014) Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis Models Mech 7:107–117

    CAS  Google Scholar 

  • Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, Ramanantsoa N, Gallego J, Ronnenberg A, Winter D (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci 105:1710–1715

    CAS  PubMed  Google Scholar 

  • James EJ, Gu J, Ramirez-Vizcarrondo CM, Hasan M, Truszkowski TL, Tan Y, Oupravanh PM, Khakhalin AS, Aizenman CD (2015) Valproate-Induced Neurodevelopmental Deficits in Xenopus laevis Tadpoles. J Neurosci 35:3218–3229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS, Chuang D-M (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett 542:74–78

    CAS  PubMed  Google Scholar 

  • Johannessen CU, Johannessen SI (2003) Valproate: past, present, and future. CNS Drug Rev 9:199–216

    CAS  PubMed  Google Scholar 

  • Kaaja E, Kaaja R, Hiilesmaa V (2003) Major malformations in offspring of women with epilepsy. Neurology 60:575–579

    PubMed  Google Scholar 

  • Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescutti DM, Rosenberg DR, Kuhn DM (2012) Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS ONE 7:e48975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T (2013) Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol 16:91–103

    CAS  PubMed  Google Scholar 

  • Kawai Y, Arinze IJ (2006) Valproic acid-induced gene expression through production of reactive oxygen species. Cancer Res 66:6563–6569

    CAS  PubMed  Google Scholar 

  • Kim JH, Scialli AR (2011) Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci 122:1–6

    CAS  PubMed  Google Scholar 

  • Kim KC, Kim P, Go HS, Choi CS, Yang S-I, Cheong JH, Shin CY, Ko KH (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett 201:137–142

    CAS  PubMed  Google Scholar 

  • Kim J-W, Choi CS, Kim KC, Park JH, Seung H, Joo SH, Yang SM, Shin CY, Park SH (2013a) Gastrointestinal tract abnormalities induced by prenatal valproic acid exposure in rat offspring. Toxicol Res 29:173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, Jeon SJ, Han SH, Cheong JH, Ryu JH (2013b) Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem 124:832–843

    CAS  PubMed  Google Scholar 

  • Kim J-W, Seung H, Kwon KJ, Ko MJ, Lee EJ, Oh HA, Choi CS, Kim KC, Gonzales EL, You JS (2014) Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PLoS ONE 9:e104927

    PubMed  PubMed Central  Google Scholar 

  • Kinast K, Peeters D, Kolk SM, Schubert D, Homberg JR (2013) Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism-related behavior. Front Cell Neurosci 7:72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E (2008a) Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord 38:481–488

    PubMed  Google Scholar 

  • Kinney DK, Munir KM, Crowley DJ, Miller AM (2008b) Prenatal stress and risk for autism. Neurosci Biobehav Rev 32:1519–1532

    PubMed  PubMed Central  Google Scholar 

  • Knapp M, Romeo R, Beecham J (2009) Economic cost of autism in the UK. Autism 13:317–336

    PubMed  Google Scholar 

  • Koren G, Nava-Ocampo AA, Moretti ME, Sussman R, Nulman I (2006) Major malformations with valproic acid. Can Fam Physician 52:441–442

    PubMed  PubMed Central  Google Scholar 

  • Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46:931–954

    CAS  PubMed  Google Scholar 

  • Lam KS, Aman MG, Arnold LE (2006) Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 27:254–289

    PubMed  Google Scholar 

  • Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW (2005) Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366:549–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374:1627–1638

    PubMed  PubMed Central  Google Scholar 

  • Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21:175–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Osawa T (2009) Astaxanthin protects neuronal cells against oxidative damage and is a potent candidate for brain food

    Google Scholar 

  • Lloyd KA (2013) A scientific review: mechanisms of valproate-mediated teratogenesis. Bioscience Horizons 6:hzt003

    CAS  Google Scholar 

  • Loohuis NO, Kole K, Glennon J, Karel P, Van der Borg G, Van Gemert Y, Van den Bosch D, Meinhardt J, Kos A, Shahabipour F (2015) Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis 80:42–53

    Google Scholar 

  • McFarlane H, Kusek G, Yang M, Phoenix J, Bolivar V, Crawley J (2008) Autism-like behavioral phenotypes in BTBR T + tf/J mice. Genes Brain Behav 7:152–163

    CAS  PubMed  Google Scholar 

  • Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C (2008) Pregnancy outcomes in women with epilepsy: a systematic review and meta-analysis of published pregnancy registries and cohorts. Epilepsy Res 81:1–13

    PubMed  PubMed Central  Google Scholar 

  • Mehta MV, Gandal MJ, Siegel SJ (2011) mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS ONE 6:e26077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menegola E, Di Renzo F, Broccia ML, Prudenziati M, Minucci S, Massa V, Giavini E (2005) Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B 74:392–398

    CAS  Google Scholar 

  • Miyazaki K, Narita N, Narita M (2005) Maternal administration of thalidomide or valproic acid causes abnormal serotonergic neurons in the offspring: implication for pathogenesis of autism. Int J Dev Neurosci 23:287–297

    CAS  PubMed  Google Scholar 

  • Moore S, Turnpenny P, Quinn A, Glover S, Lloyd D, Montgomery T, Dean J (2000) A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet 37:489–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow J, Russell A, Guthrie E, Parsons L, Robertson I, Waddell R, Irwin B, McGivern R, Morrison P, Craig J (2006) Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 77:193–198

    CAS  PubMed  Google Scholar 

  • Mowery TM, Wilson SM, Kostylev PV, Dina B, Buchholz JB, Prieto AL, Garraghty PE (2015) Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. Int J Dev Neurosci 40:15–23

    CAS  PubMed  Google Scholar 

  • Mulleners WM, McCrory DC, Linde M (2014) Antiepileptics in migraine prophylaxis: an updated Cochrane review. Cephalalgia 0333102414534325

    Google Scholar 

  • Murray ML, Hsia Y, Glaser K, Simonoff E, Murphy DG, Asherson PJ, Eklund H, Wong IC (2014) Pharmacological treatments prescribed to people with autism spectrum disorder (ASD) in primary health care. Psychopharmacology 231:1011–1021

    CAS  PubMed  Google Scholar 

  • Na L, Wartenberg M, Nau H, Hescheler J, Sauer H (2003) Anticonvulsant valproic acid inhibits cardiomyocyte differentiation of embryonic stem cells by increasing intracellular levels of reactive oxygen species. Birth Defects Res A 67:174–180

    CAS  Google Scholar 

  • Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide-and valproic acid–exposed rat: putative animal models for autism. Pediatr Res 52:576–579

    CAS  PubMed  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolini C, Ahn Y, Michalski B, Rho JM, Fahnestock M (2015) Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta neuropathologica Commun 3:3

    Google Scholar 

  • Oddi D, Crusio WE, D’Amato FR, Pietropaolo S (2013) Monogenic mouse models of social dysfunction: implications for autism. Behav Brain Res 251:75–84

    CAS  PubMed  Google Scholar 

  • Ohkawara T, Katsuyama T, Ida-Eto M, Narita N, Narita M (2015) Maternal viral infection during pregnancy impairs development of fetal serotonergic neurons. Brain Dev 37:88–93

    PubMed  Google Scholar 

  • Ornoy A (2009) Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol 28:1–10

    CAS  PubMed  Google Scholar 

  • Patterson PH (2011) Modeling autistic features in animals. Pediatr Res 69:34R–40R

    PubMed  PubMed Central  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    CAS  PubMed  Google Scholar 

  • Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H (2008) Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205:2781–2789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasalam A, Hailey H, Williams J, Moore S, Turnpenny P, Lloyd D, Dean J (2005) Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 47:551–555

    CAS  PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Croog VJ (1997) Linking etiologies in humans and animal models: studies of autism. Reprod Toxicol 11:417–422

    CAS  PubMed  Google Scholar 

  • Ronald A, Hoekstra RA (2011) Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 156B:255–274

    PubMed  Google Scholar 

  • Roullet FI, Wollaston L, deCatanzaro D, Foster JA (2010) Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. Neuroscience 170:514–522

    CAS  PubMed  Google Scholar 

  • Roullet FI, Lai JK, Foster JA (2013) In utero exposure to valproic acid and autism–a current review of clinical and animal studies. Neurotoxicol Teratol

    Google Scholar 

  • Sabers A, Bertelsen FC, Scheel-Krüger J, Nyengaard JR, Møller A (2015) Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain” [Neurosci Lett 580(2014):12–16]: a possible new animal model of autism. Neurosci Lett 588:203–207

    Google Scholar 

  • Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89

    CAS  PubMed  Google Scholar 

  • Schneider T, Turczak J, Przewłocki R (2006) Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31:36–46

    CAS  PubMed  Google Scholar 

  • Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, Przewłocki R (2008) Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33:728–740

    CAS  PubMed  Google Scholar 

  • Servadio M, Vanderschuren L, Trezza V (2015) Modeling autism-relevant behavioral phenotypes in rats and mice: Do ‘autistic’ rodents exist? Behav Pharmacol 26:522–540

    CAS  PubMed  Google Scholar 

  • Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302

    PubMed  Google Scholar 

  • Shi L, Smith SE, Malkova N, Tse D, Su Y, Patterson PH (2009) Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun 23:116–123

    PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    CAS  PubMed  Google Scholar 

  • Smith V, Brown N (2014) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. Archives of disease in childhood-education & practice edition edpract-2013–305636

    Google Scholar 

  • Štefánik P, Olexová L, Kršková L (2015) Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid. Pharmacol Biochem Behav 131:42–50

    PubMed  Google Scholar 

  • Takuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R, Takano E, Hayata-Takano A, Hashimoto H, Ago Y (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49

    CAS  PubMed  Google Scholar 

  • Tomson T, Battino D (2012) Teratogenic effects of antiepileptic drugs. Lancet Neurol 11:803–813

    CAS  PubMed  Google Scholar 

  • Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C, Botbol M, Lauth B (2014) Gene × environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 5

    Google Scholar 

  • Trinka E, Höfler J, Zerbs A, Brigo F (2014) Efficacy and safety of intravenous valproate for status epilepticus: a systematic review. CNS Drugs 28:623–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tung EW, Winn LM (2010) Epigenetic modifications in valproic acid-induced teratogenesis. Toxicol Appl Pharmacol 248:201–209

    CAS  PubMed  Google Scholar 

  • Tung EW, Winn LM (2011) Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol 80:979–987

    CAS  PubMed  Google Scholar 

  • van der Staay FJ, Arndt SS, Nordquist RE (2009) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5:11

    PubMed  PubMed Central  Google Scholar 

  • Vorstman JA, Spooren W, Persico AM, Collier DA, Aigner S, Jagasia R, Glennon JC, Buitelaar JK (2014) Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology 231:1063–1078

    CAS  PubMed  Google Scholar 

  • Wang C, Luan Z, Yang Y, Wang Z, Cui Y, Gu G (2011) Valproic acid induces apoptosis in differentiating hippocampal neurons by the release of tumor necrosis factor-α from activated astrocytes. Neurosci Lett 497:122–127

    CAS  PubMed  Google Scholar 

  • Wegner C, Nau H (1992) Alteration of embryonic folate metabolism by valproic acid during organogenesis: implications for mechanism of teratogenesis. Neurology 42:17–24

    CAS  PubMed  Google Scholar 

  • Wells PG, Kim PM, Laposa RR, Nicol CJ, Parmana T, Winn LM (1997) Oxidative damage in chemical teratogenesis. Mutation Res/Fundam Mol Mech Mutagenesis 396:65–78

    CAS  Google Scholar 

  • Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108:4–18

    CAS  PubMed  Google Scholar 

  • Wells PG, Lee CJ, McCallum GP, Perstin J, Harper PA (2010) Receptor-and reactive intermediate-mediated mechanisms of teratogenesis. In: Adverse drug reactions, Springer, Berlin, pp 131–162

    Google Scholar 

  • Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 43:202–206

    CAS  PubMed  Google Scholar 

  • Wingate M, Kirby RS, Pettygrove S, Cunniff C, Schulz E, Ghosh T, Robinson C, Lee L-C, Landa R, Constantino J (2014) Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveillance Summaries 63

    Google Scholar 

  • Winn LM (2003) Homologous recombination initiated by benzene metabolites: a potential role of oxidative stress. Toxicol Sci 72:143–149

    CAS  PubMed  Google Scholar 

  • Winn LM, Wells PG (1997) Evidence for embryonic prostaglandin H synthase-catalyzed bioactivation and reactive oxygen species-mediated oxidation of cellular macromolecules in phenytoin and benzo [a] pyrene teratogenesis. Free Radic Biol Med 22:607–621

    CAS  PubMed  Google Scholar 

  • Winn LM, Wells PG (1999) Maternal administration of superoxide dismutase and catalase in phenytoin teratogenicity 1. Free Radic Biol Med 26:266–274

    CAS  PubMed  Google Scholar 

  • Wöhr M, Roullet FI, Crawley JN (2011) Reduced scent marking and ultrasonic vocalizations in the BTBR T + tf/J mouse model of autism. Genes Brain Behavior 10:35–43

    Google Scholar 

  • Wyszynski D, Nambisan M, Surve T, Alsdorf R, Smith C, Holmes L (2005) Increased rate of major malformations in offspring exposed to valproate during pregnancy. Neurology 64:961–965

    CAS  PubMed  Google Scholar 

  • Zaken V, Kohen R, Ornoy A (2000) The development of antioxidant defense mechanism in young rat embryos in vivo and in vitro. Early Pregnancy 4:110–123

    CAS  PubMed  Google Scholar 

  • Zhang B, Wang X, Nazarali A (2010) Ascorbic acid reverses valproic acid-induced inhibition of hoxa2 and maintains glutathione homeostasis in mouse embryos in culture. Cell Mol Neurobiol 30:137–148

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart A. Ellenbroek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ranger, P., Ellenbroek, B.A. (2015). Perinatal Influences of Valproate on Brain and Behaviour: An Animal Model for Autism. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_404

Download citation

Publish with us

Policies and ethics