Skip to main content

Molecular Modeling Approaches to Study the Binding Mode on Tubulin of Microtubule Destabilizing and Stabilizing Agents

  • Chapter
  • First Online:
Tubulin-Binding Agents

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 286))

Abstract

Tubulin targeting agents constitute an important class of anticancer drugs. By acting either as microtubule stabilizers or destabilizers, they disrupt microtubule dynamics, thus inducing mitotic arrest and, ultimately, cell death by apoptosis. Three different binding sites, whose exact location on tubulin has been experimentally detected, have been identified so far for antimitotic compound targeting microtubules, namely the taxoid, the colchicine and the vinka alkaloid binding site. A number of ligand- and structure-based molecular modeling studies in this field has been reported over the years, aimed at elucidating the binding modes of both stabilizing and destabilizing agent, as well as the molecular features responsible for their efficacious interaction with tubulin. Such studies are described in this review, focusing on information provided by different modeling approaches on the structural determinants of antitubulin agents and the interactions with the binding pockets on tubulin emerged as fundamental for antitumor activity.To describe molecular modeling approaches applied to date to molecules known to bind microtubules, this paper has been divided into two main parts: microtubule destabilizing (Part 1) and stabilizing (Part 2) agents. The first part includes structure-based and ligand-based approaches to study molecules targeting colchicine (1.1) and vinca alkaloid (1.2) binding sites, respectively. In the second part, the studies performed on microtubule-stabilizing antimitotic agents (MSAA) are described. Starting from the first representative compound of this class, paclitaxel, molecular modeling studies (quantitative structure-activity relationships – QSAR – and structure-based approaches), performed on natural compounds acting with the same mechanism of action and temptative common pharmacophoric hypotheses for all of these compounds, are reported.

1 Molecular Modeling on Microtubule Destabilizing Agents

1.1 Molecular Modeling on Compounds Targeting the Colchicine Binding Site

1.1.1 Colchicine Site Inhibitors

1.1.2 Ligand-Based Approaches to Colchicine Site Inhibitors

1.1.3 Structure-Based Approaches to Colchicine Site Inhibitors

1.2 Molecular Modeling on Compounds Targeting the Vinca Alkaloid Binding Site

2 Molecular Modeling on Microtubule-Stabilizing Agents

2.1 Molecular Modeling on Paclitaxel and Taxanes

2.1.1 The First Electron Crystallography Structure of α,β-Tubulin/Paclitaxel Complex

2.1.2 The Oxetane Issue

2.1.3 The Paclitaxel Binding Mode

2.2 Epothilones

2.3 Common Pharmacophores

2.4 Other Stabilizing Agents

2.4.1 Discodermolide and Dictyostatin

2.4.2 Sarcodictyins and Eleutherobins

2.4.3 Laulimalide and Peloruside

3 Conclusions

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

TMP:

trimethoxyphenyl

CA4:

combretastatin A-4

CSI:

colchicine site inhibitors

DAMA-colchicine:

(N-deacetyl-N-(2-mercaptoacetyl)colchicine)

EPO:

epothilone

MSAA:

microtubule-stabilizing antimitotic agents

MD:

molecular dynamics

MIF:

molecular interaction field

PTX:

paclitaxel

References

  1. JONBO1. Jordan MA, Wilson L (2004) Nat Rev Cancer 4:253

    Google Scholar 

  2. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Nature 428:198

    CAS  Google Scholar 

  3. Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M (2005) Nature 435:519

    CAS  Google Scholar 

  4. Downing KH, Nogales E (1998) Curr Opin Cell Biol 10:16

    CAS  Google Scholar 

  5. Prinz H (2002) Exp Rev Anticancer Ther 2:695

    CAS  Google Scholar 

  6. Li Q, Sham HL (2002) Exp Opin Ther Patents 12:1663

    CAS  Google Scholar 

  7. Checchi PM, Nettles JH, Zhou J, Snyder JP, Joshi HC (2003) Trends Pharmacol Sci 24:361

    CAS  Google Scholar 

  8. Gupta S, Bhattacharyya B (2003) Mol Cell Biochem 253:41

    CAS  Google Scholar 

  9. Hastie SB (1991) Pharmacol Ther 51:377

    CAS  Google Scholar 

  10. Bhattacharyya B, Panda P, Gupta S, Banerjee M (2008) Med Res Rev 28:155

    CAS  Google Scholar 

  11. Nakagawa-Goto K, Chen CX, Hamel E, Wu CC, Bastow KF, Brossi A, Lee KH (2005) Bioorg Med Chem Lett 15:235

    CAS  Google Scholar 

  12. Beckers T, Mahboobi S (2003) Drugs Fut 28:767

    CAS  Google Scholar 

  13. Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D (1989) Experientia 45:680

    Google Scholar 

  14. Pettit GR, Cragg GM, Singh SB (1987) J Nat Prod 50:386

    CAS  Google Scholar 

  15. Pettit GR, Cragg GM, Herald DL, Schmidt JM, Lohavanijaya P (1982) Can J Chem 60:1374

    CAS  Google Scholar 

  16. Lin CM, Ho HH, Pettit GR, Hamel E (1989) Biochemistry 28:6984

    CAS  Google Scholar 

  17. Jordan A, Hadfield JA, Lawrence NJ, McGown AT (1998) Med Res Rev 18:259

    CAS  Google Scholar 

  18. Nam NH (2003) Curr Med Chem 10:1697

    CAS  Google Scholar 

  19. Ohsumi K, Nakagawa R, Fukuda Y, Hatanaka T, Morinaga Y, Nihei Y, Ohishi K, Suga Y, Akiyama Y, Tsuji T (1998) J Med Chem 41:3022

    CAS  Google Scholar 

  20. Pettit GR, Temple C, Jr Narayanan VL, Varma R, Simpson MJ, Boyd MR, Rener GA, Bansal N (1995) Anticancer Drug Res 10:299

    CAS  Google Scholar 

  21. Nihei Y, Suzuki M, Okano A, Tsuji T, Akiyama Y, Tsuruo T, Saito S, Hori K, Sato Y (1999) Jpn J Cancer Res 90:1387

    CAS  Google Scholar 

  22. Wang L, Woods KW, Li Q, Barr KJ, McCroskey RW, Hannick SM, Gherke L, Credo RB, Hui YH, Marsh K, Warner R, Lee JY, Zielinski-Mozng N, Frost D, Rosenberg SH, Sham HL (2002) J Med Chem 45:1697

    CAS  Google Scholar 

  23. Lin CM, Singh SB, Chu PS, Dempcy RO, Schmidt JM, Pettit GR, Hamel E (1988) Mol Pharmacol 34:200

    CAS  Google Scholar 

  24. Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA (2006) J Med Chem 49:3033

    CAS  Google Scholar 

  25. Ter Haar E, Rosekranz HS, Hamel E, Day BW (1996) Bioorg Med Chem 4:1659

    CAS  Google Scholar 

  26. Brown ML, Rieger JM, Macdonald TL (2000) Bioorg Med Chem 8:1433

    CAS  Google Scholar 

  27. Weigt M, Weise M (2000) QSAR J 19:142

    CAS  Google Scholar 

  28. Zhang SX, Feng J, Kuo SC, Brossi A, Hamel E, Tropsha A, Lee KH (2000) J Med Chem 43:167

    CAS  Google Scholar 

  29. Berg U, Bladh H (1999) Helv Chim Acta 82:323

    CAS  Google Scholar 

  30. Brossi A, Lee KH, Yeh HJC (1999) Helv Chim Acta 82:1223

    CAS  Google Scholar 

  31. Ducki S, Mackenzie G, Lawrence NJ, Snyder JP (2005) J Med Chem 48:457

    CAS  Google Scholar 

  32. Vedani A, Dobler M (2002) J Med Chem 45:2139

    CAS  Google Scholar 

  33. Feher M, Schmidt JM (2000) J Chem Inf Comput Sci 40:495

    CAS  Google Scholar 

  34. Kearsley SK, Smith GM (1990) Tetrahedron Comput Methods 3:615

    CAS  Google Scholar 

  35. De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R (2006) J Med Chem 49:947

    CAS  Google Scholar 

  36. Rappl C, Barbier P, Bourgarel-Rey V, Grégoire C, Gilli R, Manon C, Combes S, Finet JP, Peyrot V (2006) Biochemistry 45:9210

    CAS  Google Scholar 

  37. Kong Y, Grembecka J, Edler MC, Hamel E, Mooberry SL, Sabat M, Rieger J, Brown ML (2005) Chem Biol 12:1007

    CAS  Google Scholar 

  38. Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wipf P, Hamel E, Gussio R (2005) J Med Chem 48:6107

    CAS  Google Scholar 

  39. Kim DY, Kim KH, Kim ND, Lee KY, Han CK, Yoon JH, Moon SK, Lee SS, Seong BL (2006) J Med Chem 49:5564

    Google Scholar 

  40. Bellina F, Cauteruccio S, Monti S, Rossi R (2006) Bioorg Med Chem Lett 16:5757

    CAS  Google Scholar 

  41. Zhang Q, Peng Y, Wang XI, Keenan SM, Arora S, Welsh WJ (2007) J Med Chem 50:749

    CAS  Google Scholar 

  42. De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R (2004) J Med Chem 47:6120

    CAS  Google Scholar 

  43. La Regina G, Edler MC, Brancale A, Kandil S, Coluccia A, Piscitelli F, Hamel E, De Martino G, Matesanz R, Diaz JF, Scovassi AI, Prosperi E, Lavecchia A, Novellino E, Artico M, Silvestri R (2007) J Med Chem 50:2865

    CAS  Google Scholar 

  44. Romagnoli R, Baraldi PG, Pavani MG, Tabrizi MA, Preti D, Fruttarolo F, Piccagli L, Jung MK, Hamel E, Borgatti M, Gambari R (2006) J Med Chem 49:3906

    CAS  Google Scholar 

  45. Bai R, Covell DG, Pei XF, Ewell JB, Nguyen NY, Brossi A, Hamel E (2000) J Biol Chem 275:40443

    CAS  Google Scholar 

  46. Nogales E, Wolf SG, Downing KH (1998) Nature 391:199

    CAS  Google Scholar 

  47. Bai R, Pettit GR, Hamel E (1990) J Biol Chem 265:17141

    CAS  Google Scholar 

  48. Mitra A, Sept D (2004) Biochemistry 43:13955

    CAS  Google Scholar 

  49. Löwe J, Li H, Downing KH, Nogales E (2001) J Mol Biol 313:1045

    Google Scholar 

  50. Barbier P, Gregoire C, Devred F, Sarrazin M, Peyrot V (2001) Biochemistry 40:13510

    CAS  Google Scholar 

  51. Ojima I, Chakravarty S, Inoue T, Lin S, He L, Horwitz SB, Kuduk SD, Danishefsky SJ (1999) Proc Natl Acad Sci U S A 96:4256

    CAS  Google Scholar 

  52. Suffness M, Wall ME (1995) In: Suffness M Taxol: science and applications. CRC Press, Boca Ranton, FL, pp 3–25.

    Google Scholar 

  53. Schiff PB, Fant J, Horwitz SB (1979) Nature 277:665

    CAS  Google Scholar 

  54. Höfle G, Bedorf N, Gerth K, Reichenbach H (1993), (GBF) DE-4138042 1993; Chem Abstr

    Google Scholar 

  55. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Cancer Res 55:2325

    CAS  Google Scholar 

  56. Hung DT, Chen J, Schreiber SL (1996) Chem Biol 3:287

    CAS  Google Scholar 

  57. Longley RE, Gunasekera SP, Faherty D, McLane J, Dumont F (1993) Ann NY Acad Sci 696:94

    CAS  Google Scholar 

  58. Long BH, Carboni JM, Wasserman AJ, Cornell LA, Casazza AM, Jensen PR, Lindel T, Fenical W, Fairchild CR (1998) Cancer Res 58:1111–1115

    CAS  Google Scholar 

  59. Hamel E, Sackett DL, Vourloumis D, Nicolaou KC (1999) Biochemistry 38:5490

    CAS  Google Scholar 

  60. He L, Jagtap PG, Kingston DG, Shen HJ, Orr GA, Horwitz SB (2000) Biochemistry 39:3972

    CAS  Google Scholar 

  61. Wilson L, Jordan MA (2004) Chemotherapy 16:83

    CAS  Google Scholar 

  62. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L (1996) Cancer Res 56:816

    CAS  Google Scholar 

  63. Nuijen B, Bouma M, Schellens JH, Beijnen JH (2001) Invest New Drugs 19:143

    CAS  Google Scholar 

  64. Aversa SM, Cattelan AM, Salvagno L, Crivellari G, Banna G, Trevenzoli M, Chiarion-Sileni V, Monfardini S (2005) Crit Rev Oncol Hematol 53:235

    Google Scholar 

  65. Mekhail TM, Markman M (2002) Exp Opin Pharmacother 3:755

    CAS  Google Scholar 

  66. Zhao J, Kim JE, Reed E, Li QQ (2005) Int J Oncol 27:247

    CAS  Google Scholar 

  67. Ballone P, Marchi M (1993) J Phys Chem 103:3097

    Google Scholar 

  68. Milanesio M, Ugliengo P, Viterbo D (1999) J Med Chem 42:291

    CAS  Google Scholar 

  69. Guéritte-Voegelein F, Guénard D, Mangatal K, Poitier P, Guilhem J, Césario M, Pascard C (1990) Acta Crystallogr Sect C 46:781

    Google Scholar 

  70. Jiménez-Barbero J, Amat-Guerri F, Snyder JP (2002) Curr Med Chem Anticancer Agents 2:91

    Google Scholar 

  71. Brünger AT, Karplus M (1991) Acc Chem Res 24:54

    Google Scholar 

  72. Leach AR (1996) Molecular modelling, principles and applications. Longman, London, pp 436–442

    Google Scholar 

  73. Mastropaolo D, Camerman A, Luo Y, Brayer GD, Camerman N (1995) Proc Natl Acad Sci U S A 92:6920

    CAS  Google Scholar 

  74. Vander Velde DG, Georg GI, Grunewald GL, Gunn CW, Mitscher LA (1993) J Am Chem Soc 115:11650

    CAS  Google Scholar 

  75. Williams HJ, Scott AI, Dieden RA, Swindell CS, Chirlian LE, Francl MM, Heerding JM, Krauss NE (1993) Tetrahedron 49:6545

    CAS  Google Scholar 

  76. Boge TC, Wu ZJ, Himes RH, Vander Velde DG, Georg GI (1999) Bioorg Med Chem Lett 9:3047

    CAS  Google Scholar 

  77. Dubois J, Guénard D, Guéritte-Voegelein F, Guedira N, Potier P, Gillet B, Beloeil JC (1993) Tetrahedron 49:6533

    CAS  Google Scholar 

  78. Snyder JP, Nevins N, Cicero DO, Jansen JJ (2000) Am Chem Soc 122:724

    CAS  Google Scholar 

  79. Snyder JP, Nettles JH, Cornett B, Downing KH, Nogales E (2001) Proc Natl Acad Sci U S A 98:5312

    CAS  Google Scholar 

  80. Cachau RR, Gussio R, Beutler JA, Chmurny GN, Hilton BD, Muschik GM, Erickson JW (1994) Supercomput Appl High Performance Comput 8:24

    Google Scholar 

  81. Accelrys, Inc.: San Diego, CA, 2008

    Google Scholar 

  82. Wang M, Xia X, Kim Y, Hwang D, Jansen JM, Botta M, Liotta DC, Snyder JP (1999) Org Lett 15:43–46

    CAS  Google Scholar 

  83. Zbinden P, Max D, Folkers G, Vedani A (1998) QSAR 17:112

    Google Scholar 

  84. Rao S, Krauss NE, Heerding JM, Swindell CS, Ringel I, Orr GA, Horwitz SB (1994) J Biol Chem 269:3132

    CAS  Google Scholar 

  85. Rao S, Orr GA, Chaudray AG, Kingston DGI, Horwitz SB (1995) J Biol Chem 35:20235

    Google Scholar 

  86. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sacket D, Nicolaou KC, Fojo T (2000) Proc Natl Acad Sci U S A 6:2904

    Google Scholar 

  87. He L, Jagtap PG, Kingston DG, Shen HJ, Orr GA, Horwitz SB (2000) Biochemistry 39:3972

    CAS  Google Scholar 

  88. Barboni L, Lambertucci C, Appendino G, Vander Velde DG, Himes RH, Bombardelli E, Wang M, Snyder JP (2001) J Med Chem 44:1576

    CAS  Google Scholar 

  89. Querolle O, Dubois J, Thoret S, Roussi F, Montiel-Smith S, Guéritte F,Guénard D (2003) J Med Chem 46:3623

    CAS  Google Scholar 

  90. Ganesh T, Guza RC, Bane S, Ravindra R, Shanker N, Lakdawala AS, Snyder JP, Kingston DG (2004) Proc Natl Acad Sci U S A 101:10006

    CAS  Google Scholar 

  91. Shanker N, Kingston DG, Ganesh T, Yang C, Alcaraz AA, Geballe MT, Banerjee A, McGee D, Snyder JP, Bane S (2007) Biochemistry 46:11514

    CAS  Google Scholar 

  92. Gao Q, Wei JM, Chen SH (1995) Pharm Res 12:337

    CAS  Google Scholar 

  93. Gao Q, Chen SH (1996) Tetrahedron Lett 37:3425

    CAS  Google Scholar 

  94. Paloma LG, Guy RK, Wrasidlo W, Nicolaou KC (1994) Chem Biol 1:107

    Google Scholar 

  95. Ojima I, Kuduk SD, Chakravarty S, Ourevitch M, Bégue JP (1997) J Am Chem Soc 119:5519

    CAS  Google Scholar 

  96. Jiménez-Barbero J, Souto AA, Abal M, Barasoain I, Evangelio JA, Acuña AU, Andreu JM, Amat-Guerri F (1998) Biorg Med Chem 6:1857

    Google Scholar 

  97. Ewing TJA, Kuntz ED (1997) J Comp Chem 18:1175

    CAS  Google Scholar 

  98. Barboni L, Datta A, Dutta D, Georg G, Velde DG, Himes RH, Wang M, Snyder JP (2001) J Org Chem 66:3321

    CAS  Google Scholar 

  99. Wang M, Cornett B, Nettles J, Liotta DC, Snyder JP (2000) J Org Chem 65:1059

    CAS  Google Scholar 

  100. Gueritte F (2001) Curr Pharm Des 7:1229

    CAS  Google Scholar 

  101. Barboni L, Giarlo G, Riccutelli M, Ballini R, Georg G, VanderVelde DG, Himes RH, Wang M, Lakdawala A, Snyder JP (2004) Org Lett 6:461

    CAS  Google Scholar 

  102. Wu JH, Zamir LO (2000) Anticancer Drug Des 15:73

    CAS  Google Scholar 

  103. Nogales E, Whittaler M, Milligan RA, Downing KH (1999) Cell 96:79

    CAS  Google Scholar 

  104. Amos L, Lowe A (1999) J Chem Biol 6:R65; Buey RM, Díaz FJ, Andreu JM, O’Brate A, Giannakakou P, Nicolaou KC, Sasmal PK, Ritzén A, Namoto K (2004) Chem Biol 11:225

    Google Scholar 

  105. Nogales E (1999) Cel Mol Life Sci 56:133

    CAS  Google Scholar 

  106. Miller ML, Ojima I (2001) Chem Rec 1:195

    CAS  Google Scholar 

  107. Mastalerz H, Zhang G, Kadow J, Fairchild C, Long B, Vyas DM (2001) Org Lett 3:1613

    CAS  Google Scholar 

  108. Lee KW, Briggs JM (2001) J Comput Aided Mol Des 15:41

    CAS  Google Scholar 

  109. Nicolaou KC, Vourloumis D, Li T, Pastor J, Wissinger N, He Y, Ninkovic S, Sarabaia F, Vallberg H, Roschangar F, King NP, Finlay MRV, Giannakakou P, Verdier-Pinard P, Hamel E (1997) Angew Chem Int Ed Engl 36:2093

    Google Scholar 

  110. Nicolaou KC, Roschangar F, Vourloumis D (1998) Angew Chem Int Ed Engl 37:2014

    CAS  Google Scholar 

  111. Winkler JD, Axelsen PH (1996) Bioorg Med Chem Lett 6:2963

    CAS  Google Scholar 

  112. Chou T, Zhang X, Balog A, Su D, Meng D, Savin K, Bertino JR, Danishefsky SJ (1997) Proc Natl Acad Sci U S A 95:9642

    Google Scholar 

  113. Rao S, Krauss NE, Heerding JM, Swindell CS, Ringel I, Orr GA, Horwitz SB (1994) J Biol Chem 269:3132

    CAS  Google Scholar 

  114. Manetti F, Forli S, Maccari L, Corelli F, Botta M (2001) Il Farmaco 58:375

    Google Scholar 

  115. Manetti F, Maccari L, Corelli F, Botta M (2004) Curr Topics Med Chem 4:203

    CAS  Google Scholar 

  116. Nettles JH, Li H, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) Science 305:866

    CAS  Google Scholar 

  117. Carlomagno T, Blommers MJ, Meiler J, Jahnke W, Schupp T, Petersen F, Schinzer D, Altmann KH, Griesinger C (2007) Angew Chem 115:2615

    Google Scholar 

  118. Reese M, Sánchez-Pedregal VM, Kubicek K, Meiler J, Blommers MJ, Griesinger C, Carlomagno T (1997) Angew Chem Int Ed Engl 46:1864

    Google Scholar 

  119. Sánchez-Pedregal VM, Reese M, Meiler J, Blommers MJ, Griesinger C, Carlomagno T (2005) Angew Chem Intl Ed Engl 44:4172

    Google Scholar 

  120. Botta M, Forli S, Altmann K-H (unpublished results)

    Google Scholar 

  121. Bold G, Wojeik S, Caravatti G, Lindauer R, Stierlin C, Gertsch J, Wartmann M, Altmann KH (2006) ChemMedChem 1:37

    CAS  Google Scholar 

  122. Zhan W, Jiang Y, Brodie PJ, Kingston DI, Liotta DC, Snyder JP (2008) Org Lett 10:1565

    CAS  Google Scholar 

  123. Martello L, LaMarche MJ, He L, Beauchamp TJ, Smith AB, Hotwitz SB (2001) Chem Biol 8:843

    CAS  Google Scholar 

  124. Sánchez-Pedregal VM, Kubicek K, Meiler J, Lyothier I, Paterson I, Carlomagno T (2006) Angew Chem Int Ed Engl 45:7388

    Google Scholar 

  125. Smith ABI, LaMarche MJ, Falcone-Hindley M (2001) Org Lett 5:695

    Google Scholar 

  126. Petitt GR, Chichacz ZA, Gao F, Boyd MR, Schmidt JM (1994) J Chem Soc Chem Commun 1:1111

    Google Scholar 

  127. Madiraju C, Edker MC, Hamel E, Raccor BS, Balachandran R, Zhu G, Giuliano KA, Vogt A, Shin Y, Fournier JH, Fukui Y, Bruckner AM, Curran DP, Day BW (2005) Biochemistry 44:15053

    CAS  Google Scholar 

  128. Mooberry SL, Tien G Hernandez AH, Plubrukar A, Davidson BS (1999) Cancer Res 59:653

    CAS  Google Scholar 

  129. Pryor DE, O’Brate A, Bilcer G, Diaz JF, Wang Y, Wang Y, Kabaki M, Jung MK, Andreu JM, Ghosh AK, Giannakakou P, Hamel E (2002) Biochemistry 41:9109

    CAS  Google Scholar 

  130. Gapud EJ, Bai R, Ghosh AK, Hamel E (2004) Mol Pharmacol 66:113

    CAS  Google Scholar 

  131. Gaitanos TN, Buey RM, Diaz JF, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH (2004) Cancer Res 64:5063

    CAS  Google Scholar 

  132. Miller JH, Rouwe B, Gaitanos TN, Hood KA, Crume KP, Backstrom BT, La Flamme AC, Berridge MV, Northcote PT (2004) Apoptosis 9:785

    CAS  Google Scholar 

  133. Pineda O, Farràs J, Maccari L, Manetti F, Botta M, Vilarrasa J (2004) Bioorg Med Chem Lett 14:4825

    CAS  Google Scholar 

  134. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639

    CAS  Google Scholar 

  135. Jones G, Willet P, Glen RC, Leach AR, Taylor J (1997) J Mol Biol 267:727

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Botta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Botta, M., Forli, S., Magnani, M., Manetti, F. (2008). Molecular Modeling Approaches to Study the Binding Mode on Tubulin of Microtubule Destabilizing and Stabilizing Agents. In: Carlomagno, T. (eds) Tubulin-Binding Agents. Topics in Current Chemistry, vol 286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_20

Download citation

Publish with us

Policies and ethics