Skip to main content

Phosphorylated Amyloid-β: the Toxic Intermediate in Alzheimer’s Disease Neurodegeneration

  • Chapter
Alzheimer’s Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 38))

Abstract

Phosphorylated Amyloid-β (Aβ) was identified in Alzheimer’s disease (AD) brain. Using an anti-sense peptide approach the human cyclin-dependent kinase-1 (CDK-1) was identified as being responsible for Aβ phosphorylation. The phosphorylated Aβ peptide showed increased neurotoxicity and reduced ability to form Congo red-positive fibrils. Mutation of the serine 26 residue and inhibition of Aβ phosphorylation by the CDK-1 inhibitor olomoucine prevented Aβ toxicity, suggesting that the phosphorylated Aβ peptide represents a toxic intermediate. Cannabinoids prevented phosphorylated Aβ toxicity. The results from this study suggest that Aβ phosphorylation could play a role in AD pathology and represent a novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., and Saito, H., 2000, Amyloid β neurotoxicity not mediated by the mitogen-activated protein kinase cascade in cultured rat hippocampal and cortical neurons. Neurosci. Lett. 292: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S. F., Madden T.L., Alejandro A. Schaeffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman D.J., 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, A., Munoz, J.P., and Maccioni, R.B., 2001. A Cdk5-p35 stable complex is involved in the β-amyloid-induced deregulation of Cdk5 activity in hippocampal neurons. Exp. Cell Res. 264: 266–274.

    Article  PubMed  CAS  Google Scholar 

  • Ando, K., Oishi, M., Takeda, S., Iijima, K., Isohara, T., Nairn, A.C., Kirino, Y., Greengard, P., and Suzuki, T., 1999, Role of Phosphorylation of Alzheimer’s Amyloid Precursor Protein during Neuronal Differentiation. J. Neurosci. 19: 4421–4427.

    PubMed  CAS  Google Scholar 

  • Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., Yhu, S., McInnis, M.G., Go, R.C.P., Vekrellis, K., Selkoe, D.J., Saunders, A.J., and Tanzi, R.E., 2000, Evidence for genetic linkage of Alzheimer’s Disease to chromosome 10q. Science 290: 2302–2303.

    Article  PubMed  CAS  Google Scholar 

  • Blom, N., Gammeltoft, S., and Brunak, S., 1999, Sequence-and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294: 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  • Bost, K.L., and Blalock, J.E., 1989, Preparation and use of complementary peptides. Methods Enzymol. 168: 16–28.

    PubMed  CAS  Google Scholar 

  • Braak, H., Braak, E., and Bohl, J., 1993, Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33: 403–8.

    PubMed  CAS  Google Scholar 

  • Brown, N.R., Noble, M.E.M., Endicott, J.A., and Johnson, L.N., 1999, The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1:438–443.

    Article  PubMed  CAS  Google Scholar 

  • Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., and Hof, P.R., 2000, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33:95–130.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, A., Chauhan, V.P., Murakami, N., Brockerhoff, H., and Wisniewski, H.M., 1993, Amyloid beta-protein stimulates casein kinase I and casein kinase II activities. Brain Res. 629: 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Copani, A., Condorelli, F., Caruso, A., Vancheri, C., Sala, A., Giuffrida-Stella, A.M., Canonico, P.L., Nicoletti, F., and Sortino, M.A., 1999, Mitotic signaling by beta-amyloid causes neuronal death. FASEB J. 13: 2225–2234.

    PubMed  CAS  Google Scholar 

  • De Bondt, H.L., Rosenblatt, J., Jarncarik, J., Jones, H.D., Morgan, D.O., and Kim, S-H., 1993, Crystal structure of cyclin-dependent kinase-2. Nature 363: 595–597.

    Article  PubMed  Google Scholar 

  • Ertekin-Taner, N., Graff-Radford, N., Younkin, L.H., Eckman, C., Baker, M., Adamson, J., Ronald, J., Blangero, J., Hutton, M., and Younkin, S.G., 2000, Linkage of plasma Aβ42 to a quantitative locus on chromosome 10 in late-onset al., zheimer’s disease pedigrees. Science 290: 2303–2304.

    Article  PubMed  CAS  Google Scholar 

  • Giovanni, A., Wirtz-Brugger. F., Keramaris, E., Slack, R., and Park, D.S., 1999, Involvement of cell cycle elements, cyclin dependent kinases, pRb, and E2F DP, in B-amyloid-induced neuronal death. J Biol. Chem. 274: 19011–19016.

    Article  PubMed  CAS  Google Scholar 

  • Glenner, G.G., and Wong C.W., 1984, Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120: 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, C., and Glover D.M. (eds), 1995, Cell Cycle Control, IRL Press, Oxford, UK.

    Google Scholar 

  • Jellinger, K.A., 1998, The neuropathological diagnosis of Alzheimer disease. J. Neural. Transm. Suppl. 53: 97–118.

    PubMed  CAS  Google Scholar 

  • Johansson, A., Hampel, H., Faltraco, F., Buerger, K., Minthon, L., Bogdanovic, N., Sjogren, M., Zetterberg, H., Forsell, L., Lilius, L., Wahlund, L.O., Rymo, L., Prince, J.A., and Blennow, K., 2003, Increased frequency of a new polymorphism in the cell division cycle 2 (cdc2) gene in patients with Alzheimer’s disease and frontotemporal dementia. Neurosci. Lett. 340: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto, A., Nishiyama, K., Nakanishi, H., Uratsuji, Y., Nomura, H., Takeyama, Y., and Nishizuka, Y., 1985, Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 260: 12492–12499.

    PubMed  CAS  Google Scholar 

  • Kheterpal, I., Zhou, S., Cook, K.D., and Wetzel, R., 2000, Aβ amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc. Natl. Acad. Sci. USA. 97: 13597–13601.

    Article  PubMed  CAS  Google Scholar 

  • Klunk, W.E., Jacob, R. F., and Manson, R.P., 1999, Quantifying amyloid by congo red spectral assay. Methods Enzymol. 309: 285–304.

    PubMed  CAS  Google Scholar 

  • Knockaert, M., Greengard, P., and Meijer, L., 2002, Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol. Sci. 23: 417–25.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.S., Kao, S.C., Lemere, C.A., Xia, W., Tseng, H.C., Zhou, Y., Neve, R., Ahlijanian, M.K., and Tsai, L.H., 2003, APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163: 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Lee, W., Hyun Boo, J., Whan Jung, M., Dai Park, S., Ho Kim, Y., Kim, S.U., and Mook-Jung, I., 2004, Amyloid beta peptide directly inhibits PKC activation, Mol. Cell Neurosci. 26: 222–31.

    Article  PubMed  CAS  Google Scholar 

  • Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., Trinchese, F., Liu, S., Gunn-Moore, F., Lue, L.F., Walker, D.G., Kuppusamy, P., Zewier, Z.L., Arancio, O., Stern, D., Yan, S.S., and Wu, H., 2004, ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304: 448–52.

    Article  PubMed  CAS  Google Scholar 

  • Mager, P. P., 1998, Molecular simulation of the primary and secondary structures of the Aβ(1—42)-peptide of Alzheimer’s disease. Med. Res. Rev. 18: 403–430.

    Article  PubMed  CAS  Google Scholar 

  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S., 2002, The protein kinase complement of the human genome. Science 298: 1912–34.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P., 1997, Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77: 1081–1132.

    PubMed  CAS  Google Scholar 

  • Milton, N.G.N., 1999, Amyloid-β binds catalase with high affinity and inhibits hydrogen peroxide breakdown. Biochem. J., 344: 293–6.

    Article  PubMed  CAS  Google Scholar 

  • Milton, N.G.N., 2001a, Phosphorylation of amyloid-β at the serine 26 residue by human cdc2 kinase. NeuroReport 12: 3839–44.

    Article  PubMed  CAS  Google Scholar 

  • Milton, N.G.N., 2001b, Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer’s amyloid-β peptide. Neuro Toxicology 22: 767–74.

    CAS  Google Scholar 

  • Milton, N.G.N., 2002a, The amyloid-β peptide binds to cyclin B1 and increases human cyclin-dependent kinase-1 activity. Neurosci. Lett., 322: 131–3.

    Article  PubMed  CAS  Google Scholar 

  • Milton, N.G.N., 2002b, Anandamide and noladin ether prevent neurotoxicity of the human amyloid-β peptide. Neurosci. Lett., 332: 127–30.

    Article  PubMed  CAS  Google Scholar 

  • Milton, N.G.N., 2004a, Role of hydrogen peroxide in the aetiology of Alzheimer’s Disease: implications for treatment. Drugs Aging, 21: 81–100.

    Article  PubMed  CAS  Google Scholar 

  • Milton, N.G.N., 2004b, Peptides for use in the treatment of Alzheimer’s disease. United States Patent Application Publication Number US2004/0072753 A1.

    Google Scholar 

  • Milton, N.G.N., Mayor, N.P., and Rawlinson, J., 2001, Identification of amyloid-β binding sites using an antisense peptide approach. NeuroReport, 12: 2561–6.

    Article  PubMed  CAS  Google Scholar 

  • Miranda, S., Opazo, C., Larrondo, L.F., Munoz, F.J., Ruiz, F., Leighton, F., and Inestrosa N.C., 2000, The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer’s disease. Prog. Neurobiol. 62: 633–648.

    Article  PubMed  CAS  Google Scholar 

  • Myers, A., Holmans, P., Marshall, H., Kwon, J., Meyer, D., Ramic, D., Shears, S., Booth, J., DeVrieze, F.W., Crook R., Hamshere, M., Abraham, R., Tunstall, N., Rice, F., Carry, S., Lillystone, S., Kehoe, P., Rudrasingham, V., Jones, L., Lovestone, S., Perez-Tur, J., Williams, J., Owen, M.J., Hardy, J., and Goate, A.M., 2000, Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 290: 2304–2305.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, Z., 2000, Cell cycle regulatory failure in neurones: causes and consequences. Neurobiol. Aging 21: 761–769.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J., 2000, Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403: 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, M., Tanimukai, S., Yagi, K., Saito, N., Taniguchi, T., Terashima, A., Kawamata, T., Yamamoto, N., Fukunaga, K., Miyamoto, E., and Tanaka, C., 2001, Amyloid β protein activates PKC-δ and induces translocation of myristoylated alanine-rich C kinase substrate (MARCKS) in microglia. Neurochem. Int. 38: 593–600.

    Article  PubMed  CAS  Google Scholar 

  • Nazarenko, S.A., Ostroverhova, N.V., and Spurr, N.K., 1991, Regional assignment of the human cell cycle control gene CDC2 to chromosome 10q21 by in situ hybridization. Hum. Genet. 87: 621–622.

    Article  PubMed  CAS  Google Scholar 

  • Pei, J.J., Braak, H., Gong, C.X., Grundke-Iqbal, I., Iqbal, K., Winblad, B., and Cowburn, R.F., 2002, Up-regulation of cell division cycle (cdc) 2 kinase in neurons with early stage Alzheimer’s disease neurofibrillary degeneration. Acta Neuropathol. (Berl). 104: 369–76.

    CAS  Google Scholar 

  • Pinna, L.A., 1990, Casein kinase 2: an ‘eminence grise’ in cellular regulation? Biochim. Biophys. Acta 1054: 267–284.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K., Wakamiya, A., Maeda, T., Noguchi, K., Takashima, A., and Imahori, K., 1995, Correlation among secondary structure, amyloid precursor protein accumulation, and neurotoxiciry of amyloid beta(25–35) peptide as analyzed by single alanine substitution. J. Biochem (Tokyo) 118: 1108–1111.

    CAS  Google Scholar 

  • Schulman, B., Lindstrom, D.L., and Harlow, E., 1998, Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl. Acad. Sci. USA. 95: 10453–10458.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J., 1999, Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399Suppl: A23–A31.

    PubMed  CAS  Google Scholar 

  • Senderowicz, A.M., and Sausville, E.A., 2000, Preclinical and clinical development of cyclin-dependent kinase modulators. J. Natl. Cancer Inst. 92: 376–387

    Article  PubMed  CAS  Google Scholar 

  • Serpell, L.C., 2000, Alzheimer’s amyloid fibrils: structure and assembly. Biochimica et Biophysica Acta 1502: 16–30.

    PubMed  CAS  Google Scholar 

  • Shearman, M., 1999, Toxiciry of protein aggregates in PC12 cells: 3-(4,5-dimethylthiazol-2-yl)-2,5,-diphenyltetrazolium bromide assay. Methods Enzymol 309: 716–723.

    Article  PubMed  CAS  Google Scholar 

  • Skovronsky, D.M., Doms, R.W., and Lee, V.M., 1998, Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J. Cell Biol. 141: 1031–1039.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.Z., Nagy, Z., and Esiri, M.M., 1999, Cell cycle-related protein expression in vascular dementia and Alzheimer’s disease. Neurosci. Lett. 271: 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Tan, S., Maher, P., and Schubert. D., 1997, The role of protein phosphorylation in β-amyloid toxicity. Brain Res. 765: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, K., Fukui, Y., and Kageyama, H., 1994, Amyloid β protein-induced neuronal cell death: neurotoxic properties of aggregated amyloid β protein. Brain Res. 639: 240–244.

    Article  PubMed  CAS  Google Scholar 

  • Villain, M., Jackson, P.L., Manion, M.K., Dong, W.J., Su, Z., Fassina, G., Johnson, T.M,. Sakai, T.T., Krishna, N.R., and Blalock, J.E., 2000, De novo design of peptides targeted to the EF hands of calmodulin. J. Biol. Chem. 275: 2676–2685.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, I., Jicha, G., Rosado, M., and Dickson, D.W., 1997, Aberrant expression of mitotic Cdc2/Cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci. 17: 3588–3598.

    PubMed  CAS  Google Scholar 

  • Woodgett, J.R., Gould, K.L., and Hunter, T., 1986, Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur. J. Biochem. 161: 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S.D., Fu, J., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collison, K., Zhu, A., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A., and Stern D., 1997, An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389: 689–695.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Milton, N.G.N. (2005). Phosphorylated Amyloid-β: the Toxic Intermediate in Alzheimer’s Disease Neurodegeneration. In: Harris, J.R., Fahrenholz, F. (eds) Alzheimer’s Disease. Subcellular Biochemistry, vol 38. Springer, Boston, MA . https://doi.org/10.1007/0-387-23226-5_20

Download citation

Publish with us

Policies and ethics