Skip to main content
Log in

Primary Stability of Absorbable Screw Fixation for Intra-articular Calcaneal Fractures: A Finite Element Analysis

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Absorbable implants have been widely used in bone osteosynthesis, but biomechanics of its application to calcaneal fracture fixation remains unclear. This study investigates the primary stability of absorbable screws used to fix calcaneal fractures with the finite element method. A Sanders type III calcaneal fracture was modeled according to X-ray and computed tomography images of a representative patient. Fixation with four crossing absorbable screws was simulated using a finite element software package according to clinical operation. The stance phase of gait was simulated to calculate stress and displacement distributions of the calcaneus and screws. The stress concentration of screws was located at the connections between screws and fracture surfaces. For the two transverse screws, the peak von Mises stress of the inferior screw was almost twice that of the superior one. For the two longitudinal screws, the medial screw had a 64 % larger von Mises stress than that of the lateral one. The peak displacement of the calcaneus was located on the medial fragment. No notable relative displacement was seen between different fragments. The displacements of the two transverse screws were similar, and larger than those of the longitudinal screws. The displacement of the medial longitudinal screw was slightly greater than that of the lateral one. Based on the computational stress distribution, a screw with a large diameter should be recommended to fix the anterior part of the posterior facet and the medial tuberosity of the calcaneus. Fixation with crossing absorbable screws is safe and should be recommended for Sanders type III intra-articular calcaneal fractures with good bone quality. Early ambulation and rehabilitational activities should be encouraged after operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schepers, T., van Lieshout, E. M., van Ginhoven, T. M., Heetveld, M. J., & Patka, P. (2008). Current concepts in the treatment of intra-articular calcaneal fractures: results of a nationwide survey. International Orthopaedics, 32, 711–715.

    Article  Google Scholar 

  2. Schepers, T., Den Hartog, D., Vogels, L. M., & Van Lieshout, E. M. (2013). Extended lateral approach for intra-articular calcaneal fractures: an inverse relationship between surgeon experience and wound complications. Journal of Foot and Ankle Surgery, 52, 167–171.

    Article  Google Scholar 

  3. Benirschke, S. K., & Kramer, P. A. (2004). Wound healing complications in closed and open calcaneal fractures. Journal of Orthopaedic Trauma, 18, 1–6.

    Article  Google Scholar 

  4. Fu, T. H., Liu, H. C., Su, Y. S., & Wang, C. J. (2013). Treatment of displaced intra-articular calcaneal with combined transarticular external fixation and minimal internal fixation. Foot and Ankle International, 34, 91–98.

    Google Scholar 

  5. Kesemenli, C. C., Memisoglu, K., & Atmaca, H. (2013). A minimally invasive technique for the reduction of calcaneal fractures using the Endobutton®. Journal of Foot and Ankle Surgery, 52, 215–220.

    Article  Google Scholar 

  6. Shikinami, Y., & Okuno, M. (1999). Bioresorbable device made of forged composites of hydroxyapatite (HA) particles and poly-L-Lactide (PLLA): Part I: Basic characteristics. Biomaterials, 20, 859–877.

    Article  Google Scholar 

  7. Fu, X. M., Oshima, H., Araki, Y., Narita, Y., Mutsuga, M., Okada, N., et al. (2013). A comparative study of two types of sternal pins used for sternal closure: poly-L-lactide sternal pins versus uncalcined hydroxyapatite poly-L-lactide sternal pins. Journal of Artificial Organs, 16, 458–463.

    Article  Google Scholar 

  8. Nikolaou, V. S., Korres, D., Xypnitos, F., Lazarettos, J., Lallos, S., Sapkas, G., & Efstathopoulos, N. (2009). Fixation of Mitchell’s osteotomy with bioabsorbable pins for treatment of hallux valgus deformity. International Orthopaedics, 33, 701–706.

    Article  Google Scholar 

  9. Walsh, S. J., Boyle, M. J., & Morganti, V. (2008). Large osteochondral fractures of the lateral femoral condyle in the adolescent: Outcome of bioabsorbable pin fixation. Journal of Bone and Joint Surgery, American Volume, 90, 1473–1478.

    Article  Google Scholar 

  10. Min, W., Munro, M., & Sanders, R. (2010). Stabilization of displaced articular fragments in calcaneal fractures using bioabsorbable pin fixation: A technique guide. Journal of Orthopaedic Trauma, 24, 770–774.

    Article  Google Scholar 

  11. Cheung, J. T. M., An, K. N., & Zhang, M. (2006). Consequences of partial and total plantar fascia release: A finite element study. Foot and Ankle International, 27, 125–132.

    Google Scholar 

  12. Lee, J. Y., & Lee, Y. S. (2011). Optimal double screw configuration for subtalar arthrodesis: a finite element analysis. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 842–849.

    Article  Google Scholar 

  13. Liang, J., Yang, Y., Yu, G., Niu, W., & Wang, Y. (2011). Deformation and stress distribution of the human foot after plantar ligament release: a cadaveric study and finite element analysis. Science China Life Science, 54, 267–271.

    Article  Google Scholar 

  14. Lin, Y. H., Chen, A. C. Y., Kou, H. N., Yu, T. C., Sun, M. T., & Lin, C. L. (2013). Biomechancial evaluation of modified dorsal double-plating fixation with adjustable joint and microthread designs for comminuted extra-articular distal radius fractures. Journal of Medical and Biological Engineering, 33, 29–34.

    Article  Google Scholar 

  15. Xu, H., Tang, H., Guan, X., Jiang, F., Xu, N., Ju, W., et al. (2013). Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion by finite element analysis. Neurosururgery, 72, 21–26.

    Google Scholar 

  16. Sutawan, B., Atitsa, P., & Kongkiat, K. (2008). Synthesis and mechanical properties of poly (LLA-co-DLLA) copolymers. Journal of Metals Materials and Minerals, 18, 175–180.

    Google Scholar 

  17. Niu, W., & Ding, Z. (2007). Comparative study on three different methods applied to establish 3D finite element calcaneus model. Journal of Medical Biomechanics, 22, 345–350.

    Google Scholar 

  18. Hurschler, C., Emmerich, J., & Wülker, N. (2003). In vitro simulation of stance phase gait part I: Model verification. Foot and Ankle International, 24, 614–622.

    Google Scholar 

  19. Niu, W., Chu, Z., Yao, J., Zhang, M., Fan, Y., & Zhao, Q. (2012). Effects of laterality, ankle inversion and stabilizers on the plantar pressure distribution during unipedal standing. Journal of Mechanics in Medicine and Biology, 12, 1250055.

    Article  Google Scholar 

  20. Niu, W. X., Yao, J., Chu, Z. W., Jiang, C. H., Zhang M., & Fan, Y. B. (2015). Effects of ankle eversion, limb laterality, and ankle stabilizers on transient postural stability during unipedal standing. Journal of Medical and Biological Engineering, 35, 69–75.

  21. Zhang, J., Ebraheim, N., Lausé, G. E., Xiao, B., & Xu, R. (2012). A comparison of absorbable screws and metallic plates in treating calcaneal fractures: a prospective randomized trial. Journal of Trauma Acute Care Surgery, 72, 106–110.

    Google Scholar 

  22. Zhang, J., Xiao, B., & Wu, Z. (2011). Surgical treatment of calcaneal fractures with bioabsorbable screws. International Orthopaedics, 35, 529–533.

    Article  Google Scholar 

  23. Wang, C. L., Chang, G. L., Tseng, W. C., Yu, C. Y., & Lin, R. M. (1998). Strength of internal fixation for calcaneal fractures. Clinical Biomechanics, 13, 230–233.

    Article  Google Scholar 

  24. Redfern, D. J., Oliverira, M. L. R., Campbell, J. T., & Belkoff, S. M. (2006). A biomechanical comparison of locking and nonlocking plates for the fixation of calcaneal fracture. Foot and Ankle International, 27, 196–201.

    Google Scholar 

  25. Nelson, J. D., McIff, T. E., Moodie, P. G., Iverson, J. L., & Horton, G. A. (2010). Biomechanical stability of intramedullary technique for fixation of joint depressed calcaneus fracture. Foot and Ankle International, 31, 229–235.

    Article  Google Scholar 

  26. Richter, M., Droste, P., Goesling, T., Zech, S., & Krettek, C. (2006). Polyaxially-locked plate screws increase stability of fracture fixation in an experimental model of calcaneal fracture. Journal of Bone and Joint Surgery, 88, 1257–1263.

    Article  Google Scholar 

  27. Wang, C. L., Cheng, C. K., Chen, C. W., Lu, C. M., Hang, Y. S., & Liu, T. K. (1995). Contact area and pressure distribution in the subtalar joint. Journal of Biomechanics, 28, 269–279.

    Article  Google Scholar 

  28. Giddings, V. L., Beaupré, G. S., Whalen, R. T., & Carter, D. R. (2000). Calcaneal loading during walking and running. Medicine and Science in Sports and Exercise, 32, 627–634.

    Article  Google Scholar 

  29. Wagner, U. A., Sangeorzan, B. J., Harrington, R. M., & Tencer, A. F. (1992). Contact characteristics of the subtalar joint: load distribution between the anterior and posterior facets. Journal of Orthopaedic Research, 10, 535–543.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Youth Science & Technology project of Shanghai Health Burean (20134Y207), and the National Science Foundation of China (NSFC 11302154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xin Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, M., Weng, XH., Mei, J. et al. Primary Stability of Absorbable Screw Fixation for Intra-articular Calcaneal Fractures: A Finite Element Analysis. J. Med. Biol. Eng. 35, 236–241 (2015). https://doi.org/10.1007/s40846-015-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0019-6

Keywords

Navigation