Skip to main content

Advertisement

Log in

Neurologic Complications of Acute HIV Infection

  • HIV Medicine (C Yoon, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of review

This review focuses on the pathophysiology of acute HIV infection (AHI) and related central nervous system (CNS) pathology, the clinical characteristics of neurologic complications of AHI, and the implications of the CNS reservoir and viral escape for HIV treatment and cure strategies.

Recent findings

Recent studies in newly seroconverted populations show a high prevalence of peripheral neuropathy and cognitive dysfunction in AHI, even though these findings have been classically associated with chronic HIV infection. HIV cure strategies such as the “shock and kill” strategy are currently being studied in vitro and even in small clinical trials, though the CNS as a reservoir for latent HIV poses unique barriers to these treatment strategies.

Summary

Limited point of care diagnostic testing for AHI and delayed recognition of infection continue to lead to under-recognition and under-reporting of neurologic manifestations of AHI. AHI should be on the differential for a broad range of neurological conditions, from Bell’s palsy, peripheral neuropathy, and aseptic meningitis, to more rare manifestations such as ADEM, AIDP, meningoradiculitis, transverse myelitis, and brachial neuritis. Treatment for these conditions involves early initiation of antiretroviral therapy (ART) and then standard presentation-specific treatments. Current HIV cure strategies under investigation include bone marrow transplant, viral reservoir re-activation and eradication, and genome and epigenetic viral targeting. However, CNS penetration by HIV-1 occurs early on in the disease course with the establishment of the CNS viral reservoir and is an important limiting factor for these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Cohen MS, Shaw GM, AJ MM, Haynes BF. Acute HIV-1 Infection. N Engl J Med. 2011;364(20):1943–54 This provides a thorough review of clinical and pathophysiologic aspects of acute HIV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tindall B, Cooper DA. Primary HIV infection: host responses and intervention strategies. AIDS. 1991;5(1):1–14.

    CAS  PubMed  Google Scholar 

  3. Wawer MJ, Gray RH, Sewankambo NK, Serwadda D, Li X, Laeyendecker O, et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis. 2005;191(9):1403–9.

    PubMed  Google Scholar 

  4. Bellan SE, Dushoff J, Galvani AP, Meyers LA. Reassessment of HIV-1 acute phase infectivity: accounting for heterogeneity and study design with simulated cohorts. PLoS Med. 2015;12(3):e1001801.

    PubMed  PubMed Central  Google Scholar 

  5. Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003;17(13):1871–9.

    PubMed  Google Scholar 

  6. Hurt CB, Nelson JAE, Hightow-Weidman LB, Miller WC. Selecting an HIV test: a narrative review for clinicians and researchers. Sex Transm Dis. 2017;44(12):739–46.

    PubMed  PubMed Central  Google Scholar 

  7. Delaney KP, Hanson DL, Masciotra S, Ethridge SF, Wesolowski L, Owen SM. Time until emergence of HIV test reactivity following infection with HIV-1: implications for interpreting test results and retesting after exposure. Clin Infect Dis. 2017;64(1):53–9.

    CAS  PubMed  Google Scholar 

  8. Lewis JM, Macpherson P, Adams ER, Ochodo E, Sands A, Taegtmeyer M. Field accuracy of fourth-generation rapid diagnostic tests for acute HIV-1: a systematic review. AIDS. 2015;29(18):2465–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Livant E, Heaps A, Kelly C, Maharaj R, Samsunder N, Nhlangulela L, et al. The fourth generation Alere(TM) HIV Combo rapid test improves detection of acute infection in MTN-003 (VOICE) samples. J Clin Virol. 2017;94:15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stafylis C, Klausner JD. Evaluation of two 4th generation point-of-care assays for the detection of human immunodeficiency virus infection. PLoS One. 2017;12(8):e0183944.

    PubMed  PubMed Central  Google Scholar 

  11. Elliott T, Sanders EJ, Doherty M, Ndung'u T, Cohen M, Patel P, et al. Challenges of HIV diagnosis and management in the context of pre-exposure prophylaxis (PrEP), post-exposure prophylaxis (PEP), test and start and acute HIV infection: a scoping review. J Int AIDS Soc. 2019;22(12):e25419.

    PubMed  PubMed Central  Google Scholar 

  12. Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity. 2007;26(2):257–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature. 2005;434(7037):1148–52.

    CAS  PubMed  Google Scholar 

  14. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65–70.

    PubMed  PubMed Central  Google Scholar 

  15. Simon V, Ho DD, Abdool KQ. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006;368(9534):489–504.

    PubMed  PubMed Central  Google Scholar 

  16. Manji H, Miller R. The neurology of HIV infection. J Neurol Neurosurg Psychiatry. 2004;75(Suppl 1):i29–35.

    PubMed  PubMed Central  Google Scholar 

  17. •• Silva AC, Rodrigues BS, Micheletti AM, et al. Neuropathology of AIDS: an autopsy review of 284 cases from Brazil comparing the findings pre- and post-HAART (Highly Active Antiretroviral Therapy) and pre- and postmortem correlation. AIDS Res Treat. 2012;2012:186850 This paper evaluated 20 individuals with acute HIV infection, detecting CSF HIV DNA as early as 8 days after infection. Intrathecal inflammatory responses were also seen in some subjects.

    PubMed  PubMed Central  Google Scholar 

  18. Haase AT. Pathogenesis of lentivirus infections. Nature. 1986;322(6075):130–6.

    CAS  PubMed  Google Scholar 

  19. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 2012;206(2):275–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, et al. The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis. 2002;186(7):905–13.

    CAS  PubMed  Google Scholar 

  21. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology. 1992;42(9):1736–9.

    CAS  PubMed  Google Scholar 

  22. Hagberg L, Fuchs D, Rosengren L, Gisslén M. Intrathecal immune activation is associated with cerebrospinal fluid markers of neuronal destruction in AIDS patients. J Neuroimmunol. 2000;102(1):51–5.

    CAS  PubMed  Google Scholar 

  23. • Peluso MJ, Meyerhoff DJ, Price RW, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207(11):1703–12 This paper describes cognitive changes as well as structural brain changes, including parenchymal loss and changes in white matter connectivity, in indviduals with early HIV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B, et al. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis. 2011;204(5):753–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ragin AB, Wu Y, Gao Y, Keating S, du H, Sammet C, et al. Brain alterations within the first 100 days of HIV infection. Ann Clin Transl Neurol. 2015;2(1):12–21.

    PubMed  Google Scholar 

  26. Ances BM, Vaida F, Yeh MJ, Liang CL, Buxton RB, Letendre S, et al. HIV infection and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis. 2010;201(3):336–40.

    PubMed  PubMed Central  Google Scholar 

  27. Mellgren A, Antinori A, Cinque P, et al. Cerebrospinal fluid HIV-1 infection usually responds well to antiretroviral treatment. Antivir Ther. 2005;10(6):701–7.

    CAS  PubMed  Google Scholar 

  28. Gega A, Kozal MJ, Chiarella J, Lee E, Peterson J, Hecht FM, et al. Deep sequencing of HIV-1 variants from paired plasma and cerebrospinal fluid during primary HIV infection. J Virus Erad. 2015;1(4):264–8.

    PubMed  PubMed Central  Google Scholar 

  29. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015;11(3):e1004720.

    PubMed  PubMed Central  Google Scholar 

  30. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50(5):773–8.

    PubMed  Google Scholar 

  31. •• Peluso MJ, Ferretti F, Peterson J, et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012;26(14):1765–74 This study demonstrated that early initiation of ART led to significantly less molecular diversity of CNS HIV and lower levels of inflammation within the CNS but did not prevent CNS compartmentalization.

    CAS  PubMed  Google Scholar 

  32. Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2011;25(3):357–65.

    PubMed  PubMed Central  Google Scholar 

  33. Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, et al. Early antiretroviral therapy is associated with lower HIV DNA molecular diversity and lower inflammation in cerebrospinal fluid but does not prevent the establishment of compartmentalized HIV DNA populations. PLoS Pathog. 2017;13(1):e1006112.

    PubMed  PubMed Central  Google Scholar 

  34. Edén A, Nilsson S, Hagberg L, Fuchs D, Zetterberg H, Svennerholm B, et al. Asymptomatic cerebrospinal fluid HIV-1 viral blips and viral escape during antiretroviral therapy: a longitudinal study. J Infect Dis. 2016;214(12):1822–5.

    PubMed  Google Scholar 

  35. van Zoest RA, Underwood J, De Francesco D, et al. Structural brain abnormalities in successfully treated HIV infection: associations with disease and cerebrospinal fluid biomarkers. J Infect Dis. 2017;217(1):69–81.

    PubMed  Google Scholar 

  36. Underwood J, Cole JH, Leech R, Sharp DJ, Winston A. Group C. multivariate pattern analysis of volumetric neuroimaging data and its relationship with cognitive function in treated HIV disease. J Acquir Immune Defic Syndr. 2018;78(4):429–36.

    PubMed  PubMed Central  Google Scholar 

  37. Mukerji SS, Misra V, Lorenz DR, Uno H, Morgello S, Franklin D, et al. Impact of antiretroviral regimens on cerebrospinal fluid viral escape in a prospective multicohort study of antiretroviral therapy-experienced human immunodeficiency Virus-1-infected adults in the United States. Clin Infect Dis. 2018;67(8):1182–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mukerji SS, Misra V, Lorenz D, Cervantes-Arslanian AM, Lyons J, Chalkias S, et al. Temporal patterns and drug resistance in CSF viral escape among ART-experienced HIV-1 infected adults. J Acquir Immune Defic Syndr. 2017;75(2):246–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. •• Spudich S, Peterson J, Fuchs D, Price RW, Gisslen M. Potential for early antiretroviral therapy to reduce central nervous system HIV-1 persistence. AIDS. 2019;33 Suppl 2:S135–44 This paper prospectively evaluated neurologic manifestations of acute HIV in 139 participants, finding frequent mild neurologic changes including cognitive symptoms, motor findings, and neuropathy.

    PubMed  Google Scholar 

  40. Collier DA, Haddow L, Brijkumar J, Moosa MS, Benjamin L, Gupta RK. HIV Cerebrospinal fluid escape and neurocognitive pathology in the era of combined antiretroviral therapy: what lies beneath the tip of the iceberg in Sub-Saharan Africa? Brain Sci. 2018;8(10):190.

    CAS  PubMed Central  Google Scholar 

  41. Hellmuth J, Fletcher JL, Valcour V, Kroon E, Ananworanich J, Intasan J, et al. Neurologic signs and symptoms frequently manifest in acute HIV infection. Neurology. 2016;87(2):148–54.

    PubMed  PubMed Central  Google Scholar 

  42. Tambussi G, Gori A, Capiluppi B, Balotta C, Papagno L, Morandini B, et al. Neurological symptoms during primary human immunodeficiency virus (HIV) infection correlate with high levels of HIV RNA in cerebrospinal fluid. Clin Infect Dis. 2000;30(6):962–5.

    CAS  PubMed  Google Scholar 

  43. Kore I, Ananworanich J, Valcour V, Fletcher JL, Chalermchai T, Paul R, et al. Neuropsychological impairment in acute HIV and the effect of immediate antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;70(4):393–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Andrade P, Figueiredo C, Carvalho C, Santos L, Sarmento A. Transverse myelitis and acute HIV infection: a case report. BMC Infect Dis. 2014;14:149.

    PubMed  PubMed Central  Google Scholar 

  45. Denning DW, Anderson J, Rudge P, Smith H. Acute myelopathy associated with primary infection with human immunodeficiency virus. Br Med J (Clin Res Ed). 1987;294(6565):143–4.

    CAS  Google Scholar 

  46. Hamada Y, Watanabe K, Aoki T, Arai N, Honda M, Kikuchi Y, et al. Primary HIV infection with acute transverse myelitis. Intern Med. 2011;50(15):1615–7.

    PubMed  Google Scholar 

  47. Pérez-Bartolomé F, Santos-Bueso E, Ávalos-Franco N, Porta-Etessam J. Unilateral retrobulbar optic neuropathy as the initial manifestation of human immunodeficiency virus infection. Neurologia. 2017;32(3):199–201.

    PubMed  Google Scholar 

  48. Fortin E, Heller HM, Lyons J, Prasad S. Bilateral optic neuritis from acute HIV infection. Neurol Clin Pract. 2019;9(3):e19–21.

    PubMed  PubMed Central  Google Scholar 

  49. Larsen M, Toft PB, Bernhard P, Herning M. Bilateral optic neuritis in acute human immunodeficiency virus infection. Acta Ophthalmol Scand. 1998;76(6):737–8.

    CAS  PubMed  Google Scholar 

  50. Lee EJ, Kim YH, Lee JY, Sunwoo JS, Park SY, Kim TH. Acute HIV-1 infection presenting with fulminant encephalopathy. Int J STD AIDS. 2017;28(10):1041–4.

    PubMed  Google Scholar 

  51. Narciso P, Galgani S, Del Grosso B, et al. Acute disseminated encephalomyelitis as manifestation of primary HIV infection. Neurology. 2001;57(8):1493–6.

    CAS  PubMed  Google Scholar 

  52. Naidoo A, Paruk H, Bhagwan B, Moodley A. Atypical presentations of acute disseminated encephalomyelitis (ADEM) in HIV infection. J Neuro-Oncol. 2017;23(1):160–70.

    CAS  Google Scholar 

  53. Abad S, Touze E, Blanche P, Sicard D, Salmon-Ceron D, Mas JL, et al. Shoulder girdle syndrome revealing primary HIV infection. Clin Infect Dis. 2002;34(8):1162–3.

    CAS  PubMed  Google Scholar 

  54. Denning DW. The neurological features of acute HIV infection. Biomed Pharmacother. 1988;42(1):11–4.

    CAS  PubMed  Google Scholar 

  55. Serrano P, Hernández N, Arroyo JA, de Llobet JM, Domingo P. Bilateral Bell palsy and acute HIV type 1 infection: report of 2 cases and review. Clin Infect Dis. 2007;44(6):e57–61.

    PubMed  Google Scholar 

  56. Krasner CG, Cohen SH. Bilateral Bell’s palsy and aseptic meningitis in a patient with acute human immunodeficiency virus seroconversion. West J Med. 1993;159(5):604–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruiz LM, Kirmani B. Presentation of bilateral peripheral seventh cranial nerve palsy in an HIV patient. Case Rep Neurol Med. 2012;2012:267405.

    PubMed  PubMed Central  Google Scholar 

  58. Hagberg L, Malmvall BE, Svennerholm L, Alestig K, Norkrans G. Guillain-Barré syndrome as an early manifestation of HIV central nervous system infection. Scand J Infect Dis. 1986;18(6):591–2.

    CAS  PubMed  Google Scholar 

  59. Shepherd SJ, Black H, Thomson EC, Gunson RN. HIV positive patient with GBS-like syndrome. JMM Case Rep. 2017;4(8):e005107.

    PubMed  PubMed Central  Google Scholar 

  60. Sloan DJ, Nicolson A, Miller AR, Beeching NJ, Beadsworth MB. Human immunodeficiency virus seroconversion presenting with acute inflammatory demyelinating polyneuropathy: a case report. J Med Case Rep. 2008;2:370.

    PubMed  PubMed Central  Google Scholar 

  61. Varshney AN, Anand R, Bhattacharjee A, Prasad P, Kumar N, Singh NK. HIV seroconversion manifesting as Guillian-Barre syndrome. Chin Med J. 2014;127(2):396.

    PubMed  Google Scholar 

  62. Paton P, Poly H, Gonnaud PM, Tardy JC, Fontana J, Kindbeiter K, et al. Acute meningoradiculitis concomitant with seroconversion to human immunodeficiency virus type 1. Res Virol. 1990;141(4):427–33.

    CAS  PubMed  Google Scholar 

  63. Calabrese LH, Proffitt MR, Levin KH, Yen-Lieberman B, Starkey C. Acute infection with the human immunodeficiency virus (HIV) associated with acute brachial neuritis and exanthematous rash. Ann Intern Med. 1987;107(6):849–51.

    CAS  PubMed  Google Scholar 

  64. Mielke MM, Kozauer NA, Chan KC, George M, Toroney J, Zerrate M, et al. Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neuroimage. 2009;46(1):47–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosca EC, Rosca O, Simu M. Intravenous immunoglobulin treatment in a HIV-1 positive patient with Guillain-Barré syndrome. Int Immunopharmacol. 2015;29(2):964–5.

    CAS  PubMed  Google Scholar 

  66. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75(23):2087–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cysique LA, Brew BJ. Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neuro-Oncol. 2011;17(2):176–83.

    Google Scholar 

  68. Eholié SP, Badje A, Kouame GM, N’takpe JB, Moh R, Danel C, et al. Antiretroviral treatment regardless of CD4 count: the universal answer to a contextual question. AIDS Res Ther. 2016;13:27.

    PubMed  PubMed Central  Google Scholar 

  69. Gao C, Meing J, Xiao X, Wang M, Barterly Williams A, Wang H. Antiretroviral therapy improves neurocognitive impairment in people living with HIV? A meta-analysis. In. In Press ed. International Journal of Nursing Sciences 2020.

  70. Robertson K, Lama JR, Pilcher CD, et al. Can we afford to wait? ART and the CNS. In. Conference on retroviruses and autoimmune infections 2017.

  71. Anderson AM, Muñoz-Moreno JA, McClernon DR, Ellis RJ, Cookson D, Clifford DB, et al. Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis. 2017;215(1):105–13.

    CAS  PubMed  Google Scholar 

  72. Gelman BB, Lisinicchia JG, Morgello S, Masliah E, Commins D, Achim CL, et al. Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr. 2013;62(5):487–95.

    PubMed  PubMed Central  Google Scholar 

  73. Hellmuth J, Valcour V, Spudich S. CNS reservoirs for HIV: implications for eradication. J Virus Erad. 2015;1(2):67–71.

    PubMed  PubMed Central  Google Scholar 

  74. Ananworanich J, Schuetz A, Vandergeeten C, Sereti I, de Souza M, Rerknimitr R, et al. Impact of multi-targeted antiretroviral treatment on gut T cell depletion and HIV reservoir seeding during acute HIV infection. PLoS One. 2012;7(3):e33948.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. •• Burbelo PD, Price RW, Hagberg L, et al. Anti-human immunodeficiency virus antibodies in the cerebrospinal fluid: evidence of early treatment impact on central nervous system reservoir? J Infect Dis. 2018;217(7):1024–32 This study followed 8 patients who were treated with ART in the earliest phase of acute HIV (Fiebig I). Viral rebound was seen in all patients despite undetectable HIV-1 RNA in reservoirs such as CSF, gut, or lymph nodes at time of diagnosis. This highlights the difficulty in eradicating HIV even with very early treatment and highlights the need for a cure.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Henrich TJ, Hatano H, Bacon O, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: an observational study. PLoS Med. 2017;14(11):e1002417.

    PubMed  PubMed Central  Google Scholar 

  77. Colby DJ, Trautmann L, Pinyakorn S, et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med. 2018;24(7):923–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith DB, Simmonds P, Bell JE. Brain viral burden, neuroinflammation and neurodegeneration in HAART-treated HIV positive injecting drug users. J Neurovirol. 2014;20(1):28–38.

    CAS  PubMed  Google Scholar 

  79. • Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. HIV-1 target cells in the CNS. J Neurovirol. 2015;21(3):276–89 This review discusses in detail the pathophysiology behind HIV penetration into the CNS and barriers to development of cure strategies on both a molecular and a clinical level.

    CAS  PubMed  Google Scholar 

  80. Zink MC, Brice AK, Kelly KM, et al. Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis. 2010;202(1):161–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: a new insight into a functional HIV cure. EBioMedicine. 2019;45:624–9.

    PubMed  PubMed Central  Google Scholar 

  82. Bingham R, Ahmed N, Rangi P, Johnson M, Tyrer M, Green J. HIV encephalitis despite suppressed viraemia: a case of compartmentalized viral escape. Int J STD AIDS. 2011;22(10):608–9.

    CAS  PubMed  Google Scholar 

  83. Lescure FX, Moulignier A, Savatovsky J, et al. CD8 encephalitis in HIV-infected patients receiving cART: a treatable entity. Clin Infect Dis. 2013;57(1):101–8.

    CAS  PubMed  Google Scholar 

  84. Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.

    PubMed  Google Scholar 

  85. Gupta RK, Abdul-Jawad S, McCoy LE, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019;568(7751):244–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. He G, Margolis DM. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol. 2002;22(9):2965–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang G, Nguyen D, Archin NM, et al. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest. 2018;128(3):1190–8.

    PubMed  PubMed Central  Google Scholar 

  88. Battistini A, Sgarbanti M. HIV-1 latency: an update of molecular mechanisms and therapeutic strategies. Viruses. 2014;6(4):1715–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brogdon J, Ziani W, Wang X, Veazey RS, Xu H. In vitro effects of the small-molecule protein kinase C agonists on HIV latency reactivation. Sci Rep. 2016;6:39032.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang H, Liu S, Jean M, et al. A novel bromodomain inhibitor reverses HIV-1 latency through specific binding with BRD4 to promote Tat and P-TEFb association. Front Microbiol. 2017;8:1035.

    PubMed  PubMed Central  Google Scholar 

  91. Bobardt M, Kuo J, Chatterji U, et al. The inhibitor apoptosis protein antagonist Debio 1143 Is an attractive HIV-1 latency reversal candidate. PLoS One. 2019;14(2):e0211746.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Elliott JH, Wightman F, Solomon A, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 2014;10(10):e1004473.

    PubMed  PubMed Central  Google Scholar 

  94. Anderson I, Low JS, Weston S, et al. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci U S A. 2014;111(15):E1528–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kessing CF, Nixon CC, Li C, et al. In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. Cell Rep. 2017;21(3):600–11.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Institutes of Health (P30 MH075673-11A1, MH120693-01, AG059504-01A1, P30 AI094189-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanna Saylor MD, MHS.

Ethics declarations

Conflict of interest

Deanna Saylor declares that she has no conflict of interest. Kathryn B. Holroyd declares that she has no conflict of interest. Anastasia Vishnevetsky declares that she has no conflict of interest. Maahika Srinivasan declares that she has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics approval

No ethics board approval was required for this narrative review.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holroyd, K.B., Vishnevetsky, A., Srinivasan, M. et al. Neurologic Complications of Acute HIV Infection. Curr Treat Options Infect Dis 12, 227–242 (2020). https://doi.org/10.1007/s40506-020-00228-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-020-00228-3

Keywords

Navigation