Skip to main content
Log in

Median nerve evaluation by shear wave elastosonography: impact of “bone-proximity” hardening artifacts and inter-observer agreement

  • Original Article
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

Peripheral nerves frequently travel close to the bone surface and are, therefore, prone to elastosonographic “bone-proximity” hardening artifacts. The impact of these artifacts on quantitative measurements of median nerve stiffness performed by shear wave elastosonography has not been explored. Our aim was to assess normal median nerve stiffness values at various locations.

Materials and methods

Thirty-six healthy volunteers (24 women and 12 men) aged between 25 and 40 years were evaluated. Two operators performed the evaluation: one expert (6 years of ultrasound experience) and one inexperienced operator (6 months’ experience). The nerve was sampled in cross-section at three different locations: mid-forearm, immediately before the carpal tunnel and within the tunnel. The ultrasound scanner was equipped with a 14-MHz linear probe. The Shear Wave module was activated in one-shot mode. Measurements were performed using a ROI corresponding to the diameter of the nerve.

Results

The mean values of stiffness of the medial nerve were 32.26 kPa ± 18.60 within the carpal tunnel, 22.20 kPa ± 9.84 at the carpal tunnel inlet and 7.62 kPa ± 7.38 in the forearm. Inter-observer agreement assessed using the intraclass correlation coefficient (ICC) was “moderate” within the carpal tunnel (ICC = 0.44), “moderate” at the carpal tunnel inlet (ICC = 0.41) and “fair” in the forearm (ICC = 0.38).

Conclusions

The stiffness of the median nerve progressively increases in its distal portions, where the nerve approaches the bone surface. Inter-observer agreement was generally good (from fair to moderate).

Sommario

Scopo del lavoro

i nervi periferici frequentemente decorrono in prossimità di superfici ossee e sono perciò soggetti agli artefatti elasosonografici di “prossimità ossea”. L’impatto di questi artefatti sulle misure quantitative di stiffness del nervo mediano realizzate con elastosonografia a onde trasversali non è stata esplorata. Il nostro intento è quello di valutare la stiffness del nervo mediano in varie sedi.

Materiali e metodi

Sono stati valutati trentasei volontari sani (24 donne e 12 uomini) di età compresa tra 25 e 40 anni. Le valutazioni sono state eseguite da 2 operatori: un operatore esperto (6 anni di esperienza in ecografia muscoloscheletrica) e uno non esperto (6 mesi di esperienza). Il nervo è stato campionato in sezione assiale a tre livelli differenti: a livello dell’avambraccio, immediatamente prima del tunnel carpale e entro il tunnel. L’ecografo utilizzato era equipaggiato con una sonda lineare da 14 MHz. Il modulo shear-wave è stato attivato nella modalità “one-shot”. Le misurazioni sono state realizzate usando una ROI della stessa dimensione del nervo.

Risultati

Il valore medio di stiffness del nervo mediano è risultato essere di 32.26 kPa ± 18.60 entro il tunnel carpale, 22.20 kPa ± 9.84 all’inlet del tunnel carpale e 7.62 kPa ± 7.38 a livello dell’avambraccio. L’agreement inter osservatore è stato valutato usando l’Intraclass Correlation Coefficient (ICC) ed è risultato “moderato” entro il tunnel carpale (ICC = 0.44), “moderato” all’inlet del tunnel carpale (ICC = 0.41) e “soddisfacente” nell’avambraccio (ICC = 0.38).

Conclusioni

La stiffness del nervo mediano aumenta progressivamente nelle sue porzioni distali ove il nervo si avvicina alle superfici ossee. L’agreement inter osservatore di queste misurazioni è stato generalmente buono (da soddisfacente a moderato).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Bibliography

  1. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH, Klauser AS, Sporea I, Calliada F, Cantisani V, D’Onofrio M, Drakonaki EE, Fink M, Friedrich-Rust M, Fromageau J, Havre RF, Jenssen C, Ohlinger R, Săftoiu A, Schaefer F, Dietrich CF, EFSUMB (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 34(3):238–253

    Article  CAS  PubMed  Google Scholar 

  2. Cantisani V, Grazhdani H, Drakonaki E et al (2015) Strain US elastography for the characterization of thyroid nodules: advantages and limitation. Int J Endocrinol 2015:908575

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cantisani V, Lodise P, Di Rocco G et al (2015) Diagnostic accuracy and interobserver agreement of quasistatic ultrasound elastography in the diagnosis of thyroid nodules. Ultraschall Med 36(2):162–167

    CAS  PubMed  Google Scholar 

  4. Cantisani V, Grazhdani H, Ricci P et al (2014) Q-elastosonography of solid thyroid nodules: assessment of diagnostic efficacy and interobserver variability in a large patient cohort. Eur Radiol 24(1):143–150

    Article  PubMed  Google Scholar 

  5. Botticelli A, Mazzotti E, Di Stefano D et al (2015) Positive impact of elastography in breast cancer diagnosis: an institutional experience. J Ultrasound 18(4):321–327

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miyamoto H, Morizaki Y, Kashiyama T, Tanaka S (2016) Grey-scale sonography and sonoelastography for diagnosing carpal tunnel syndrome. World J Radiol 8(3):281–287

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chammas M, Boretto J, Burmann LM, Ramos RM, Dos Santos Neto FC, Silva JB (2014) Carpal tunnel syndrome—Part I (anatomy, physiology, etiology and diagnosis). Rev Bras Ortop 49(5):429–436

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brezak R, Hippe D, Thiel J, Dighe MK (2015) Variability in stiffness assessment in a thyroid nodule using shear wave imaging. Ultrasound Q 31(4):243–249

    Article  PubMed  Google Scholar 

  9. Bhatia KS, Cho CC, Tong CS, Lee YY, Yuen EH, Ahuja AT (2012) Shear wave elastography of focal salivary gland lesions: preliminary experience in a routine head and neck US clinic. Eur Radiol 22(5):957–965

    Article  PubMed  Google Scholar 

  10. Fu T, Cao M, Liu F, Zhu J, Ye D, Feng X, Xu Y, Wang G, Bai Y (2015) Carpal tunnel syndrome assessment with ultrasonography: value of inlet-to-outlet median nerve area ratio in patients versus healthy volunteers. PLoS One 10(1):e0116777

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kantarci F, Ustabasioglu FE, Delil S, Olgun DC, Korkmazer B, Dikici AS, Tutar O, Nalbantoglu M, Uzun N, Mihmanli I (2014) Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome. Eur Radiol 24(2):434–440

    Article  PubMed  Google Scholar 

  12. Zhang C, Li M, Jiang J, Zhou Q, Xiang L, Huang Y, Ban W, Peng W (2017) Diagnostic value of virtual touch tissue imaging quantification for evaluating median nerve stiffness in carpal tunnel syndrome. J Ultrasound Med 36(9):1783–1791

    Article  PubMed  Google Scholar 

  13. Ghajarzadeh M, Dadgostar M, Sarraf P, Emami-Razavi SZ, Miri S, Malek M (2015) Application of ultrasound elastography for determining carpal tunnel syndrome severity. Jpn J Radiol 33(5):273–278

    Article  PubMed  Google Scholar 

  14. Liao YY, Lee WN, Lee MR, Chen WS, Chiou HJ, Kuo TT, Yeh CK (2015) Carpal tunnel syndrome: US strain imaging for diagnosis. Radiology 275(1):205–214

    Article  PubMed  Google Scholar 

  15. Ogur T, Yakut ZI, Teber MA, Alp F, Turan A, Tural A, Gelisen O (2015) Ultrasound elastographic evaluation of the median nerve in pregnant women with carpal tunnel syndrome. Eur Rev Med Pharmacol Sci 19(1):23–30

    CAS  PubMed  Google Scholar 

  16. Miyamoto H, Halpern EJ, Kastlunger M, Gabl M, Arora R, Bellmann-Weiler R, Feuchtner GM, Jaschke WR, Klauser AS (2014) Carpal tunnel syndrome: diagnosis by means of median nerve elasticity—improved diagnostic accuracy of US with sonoelastography. Radiology 270(2):481–486

    Article  PubMed  Google Scholar 

  17. Orman G, Ozben S, Huseyinoglu N, Duymus M, Orman KG (2013) Ultrasound elastographic evaluation in the diagnosis of carpal tunnel syndrome: initial findings. Ultrasound Med Biol 39(7):1184–1189

    Article  PubMed  Google Scholar 

  18. Yoshii Y, Ishii T, Etou F, Sakai S, Tanaka T, Ochiai N (2014) Reliability of automatic vibratory equipment for ultrasonic strain measurement of the median nerve. Ultrasound Med Biol 40(10):2352–2357

    Article  PubMed  Google Scholar 

  19. Yoshii Y, Ishii T, Tanaka T, Tung WL, Sakai S (2015) Detecting median nerve strain changes with cyclic compression apparatus: a comparison of carpal tunnel syndrome patients and healthy controls. Ultrasound Med Biol 41(3):669–674

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Bortolotto.

Ethics declarations

Conflict of interest

Fabrizio Calliada is consultant for Hitachi Medical System Europe, Shenzhen Mindray Bio-Medical Electronics Co., Toshiba Medical System Europe. Vito Cantisani is lecturer for Bracco, Samsung and Toshiba Medical System. No conflict of interest to disclose from the other authors.

Ethical standard statements

All human and animal studies have been approved by the appropriate ethics committee and have, therefore, been performed in accordance with the ethical standards laid down in the Helsinki Declaration of 1975 and its late amendments.

Informed consent

Written informed consent was obtained from every subject.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolotto, C., Turpini, E., Felisaz, P. et al. Median nerve evaluation by shear wave elastosonography: impact of “bone-proximity” hardening artifacts and inter-observer agreement. J Ultrasound 20, 293–299 (2017). https://doi.org/10.1007/s40477-017-0267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-017-0267-0

Keywords

Navigation