Skip to main content

Advertisement

Log in

Diagnostic efficacy of bone scintigraphy in transthyretin cardiac amyloidosis: an updated systematic review and Bayesian bivariate meta-analysis

  • Meta-Analysis
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Radionuclide bone scintigraphy is increasingly attracting the attention of clinicians as a tool for the specific diagnosis of transthyretin (ATTR) cardiac amyloidosis. We aimed to describe the diagnostic value of bone scintigraphy in ATTR amyloid cardiomyopathy (ATTR-CA) by performing a meta-analysis of multiple studies.

Methods

We searched all literature included in PubMed and EMBASE until August 10, 2021. A Bayesian bivariate meta-analysis was used for all included studies. Diagnostic performance of bone scan for the diagnosis of ATTR-CA was assessed by calculating pooled sensitivity, specificity, LLR  +  (Log positive likelihood ratio), LLR − (Log negative likelihood ratio), LDOR (Log diagnostic odds ratio), and plotting forest maps. Summary receiver operating characteristic curves (SROC) were fitted based on a Bayesian bivariate hierarchical model to assess the overall diagnostic efficacy of bone scan for the diagnosis of ATTR-CA. A meta-analysis with subgroups based on imaging time, diagnostic criteria, and different radiotracers was performed to compare the differences in diagnostic efficacy.

Results

We included a total of 39 publications with a total of 3636 patients. The pooled sensitivity, specificity, LLR  +, LLR −, and LDOR of bone scan for diagnosing ATTR-CA were 0.97, 0.96, 3.22, − 3.59, and 6.81, respectively; the SROC curve showed excellent diagnostic performance with an area under the curve of 0.99. The semi-quantitative visual score method, quantitative ratio (i.e., H/CL, H/WB, H/M) analysis, and quantitative cardiac SUVmax/peak analysis all had higher pooled sensitivity (0.97 vs. 0.98 vs. 1.00); the pooled specificity of cardiac SUVmax analysis was lower than that of visual scoring and quantitative ratio analysis (0.87 vs. 0.96 vs. 0.96). Regarding imaging time, the pooled sensitivity, specificity, LLR  +, LLR − and LDOR were better for 3-h imaging than 1-h (0.98 vs. 0.97; 0.97 vs. 0.95; 3.49 vs. 3.03; − 3.91 vs. − 3.72; 7.40 vs. 6.75). Among the different bone-seeking tracers, the pooled sensitivities of 99mTc-DPD, 99mTc-PYP, and 99mTc-HMDP were 0.98, 0.95, and 1.00, respectively, and the pooled specificities were 0.94, 0.95, and 0.98, respectively.

Conclusions

Bone scintigraphy has an excellent diagnostic performance in ATTR-CA. An accurate diagnosis of ATTR-CA can be made based on the semi-quantitative visual score, quantitative ratios of planar imaging, and cardiac bone-tracer uptake values of SPECT images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All analytical data are included in this article. If the original data tables are required, they can be obtained by contacting the corresponding author.

Code availability

When we use the R language, we use the related code of the INLA package and the meta4diag package. Detailed code is available by contacting the corresponding author.

References

  1. Abe R, Katoh N, Takahashi Y, Takasone K, Yoshinaga T, Yazaki M et al (2021) Distribution of amyloidosis subtypes based on tissue biopsy site—consecutive analysis of 729 patients at a single amyloidosis center in Japan. Pathol Int 71:70–79. https://doi.org/10.1111/pin.13041

    Article  CAS  PubMed  Google Scholar 

  2. Nakagawa M, Sekijima Y, Yazaki M, Tojo K, Yoshinaga T, Doden T et al (2016) Carpal tunnel syndrome: a common initial symptom of systemic wild-type ATTR (ATTRwt) amyloidosis. Amyloid 23:58–63. https://doi.org/10.3109/13506129.2015.1135792

    Article  CAS  PubMed  Google Scholar 

  3. Westermark P, Westermark GT, Suhr OB, Berg S (2014) Transthyretin-derived amyloidosis: probably a common cause of lumbar spinal stenosis. Ups J Med Sci 119:223–228. https://doi.org/10.3109/03009734.2014.895786

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sekijima Y, Ueda M, Koike H, Misawa S, Ishii T, Ando Y (2018) Diagnosis and management of transthyretin familial amyloid polyneuropathy in Japan: red-flag symptom clusters and treatment algorithm. Orphanet J Rare Dis 13:6. https://doi.org/10.1186/s13023-017-0726-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lindmark K, Pilebro B, Sundstrom T, Lindqvist P (2021) Prevalence of wild type transtyrethin cardiac amyloidosis in a heart failure clinic. ESC Heart Fail 8:745–749. https://doi.org/10.1002/ehf2.13110

    Article  PubMed  Google Scholar 

  6. Cyrille NB, Goldsmith J, Alvarez J, Maurer MS (2014) Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis. Am J Cardiol 114:1089–1093. https://doi.org/10.1016/j.amjcard.2014.07.026

    Article  PubMed  Google Scholar 

  7. Murtagh B, Hammill SC, Gertz MA, Kyle RA, Tajik AJ, Grogan M (2005) Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol 95:535–537. https://doi.org/10.1016/j.amjcard.2004.10.028

    Article  PubMed  Google Scholar 

  8. Cappelli F, Baldasseroni S, Bergesio F, Perlini S, Salinaro F, Padeletti L et al (2015) Echocardiographic and biohumoral characteristics in patients with AL and TTR amyloidosis at diagnosis. Clin Cardiol 38:69–75. https://doi.org/10.1002/clc.22353

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chatzantonis G, Bietenbeck M, Elsanhoury A, Tschope C, Pieske B, Tauscher G et al (2021) Diagnostic value of cardiovascular magnetic resonance in comparison to endomyocardial biopsy in cardiac amyloidosis: a multi-centre study. Clin Res Cardiol 110:555–568. https://doi.org/10.1007/s00392-020-01771-1

    Article  CAS  PubMed  Google Scholar 

  10. Rubin J, Maurer MS (2020) Cardiac amyloidosis: overlooked, underappreciated, and treatable. Annu Rev Med 71:203–219. https://doi.org/10.1146/annurev-med-052918-020140

    Article  CAS  PubMed  Google Scholar 

  11. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  12. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  13. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B 71:319–392

    Article  Google Scholar 

  14. Guo J, Riebler A (2018) meta4diag: Bayesian bivariate meta-analysis of diagnostic test studies for routine practice. J Stat Softw 83:1–31. https://doi.org/10.18637/jss.v083.i01

    Article  Google Scholar 

  15. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol 6:31. https://doi.org/10.1186/1471-2288-6-31

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song F, Khan KS, Dinnes J, Sutton AJ (2002) Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol 31:88–95. https://doi.org/10.1093/ije/31.1.88

    Article  PubMed  Google Scholar 

  17. Puille M, Altland K, Linke RP, Steen-Muller MK, Kiett R, Steiner D et al (2002) 99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur J Nucl Med Mol Imaging 29:376–379. https://doi.org/10.1007/s00259-001-0730-0

    Article  CAS  PubMed  Google Scholar 

  18. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L et al (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46:1076–1084. https://doi.org/10.1016/j.jacc.2005.05.073

    Article  PubMed  Google Scholar 

  19. Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O et al (2011) Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging 38:470–478. https://doi.org/10.1007/s00259-010-1642-7

    Article  PubMed  Google Scholar 

  20. de Haro-del Moral FJ, Sanchez-Lajusticia A, Gomez-Bueno M, Garcia-Pavia P, Salas-Anton C, Segovia-Cubero J (2012) Role of cardiac scintigraphy with (9)(9)mTc-DPD in the differentiation of cardiac amyloidosis subtype. Rev Esp Cardiol 65:440–446. https://doi.org/10.1016/j.recesp.2011.12.015

    Article  PubMed  Google Scholar 

  21. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS (2013) (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 6:195–201. https://doi.org/10.1161/CIRCIMAGING.112.000132

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hutt DF, Quigley AM, Page J, Hall ML, Burniston M, Gopaul D et al (2014) Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging 15:1289–1298. https://doi.org/10.1093/ehjci/jeu107

    Article  PubMed  Google Scholar 

  23. Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D et al (2015) Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 22:210–220. https://doi.org/10.3109/13506129.2015.1072089

    Article  CAS  PubMed  Google Scholar 

  24. Papantoniou V, Valsamaki P, Kastritis S, Tsiouris S, Delichas Z, Papantoniou Y et al (2015) Imaging of cardiac amyloidosis by (99m)Tc-PYP scintigraphy. Hell J Nucl Med 18(Suppl 1):42–50

    PubMed  Google Scholar 

  25. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R et al (2016) Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol 1:880–889. https://doi.org/10.1001/jamacardio.2016.2839

    Article  PubMed  Google Scholar 

  26. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133:2404–2412. https://doi.org/10.1161/CIRCULATIONAHA.116.021612

    Article  CAS  PubMed  Google Scholar 

  27. Cappelli F, Gallini C, Di Mario C, Costanzo EN, Vaggelli L, Tutino F et al (2017) Accuracy of 99mTc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol 26:497–504. https://doi.org/10.1007/s12350-017-0922-z

    Article  PubMed  Google Scholar 

  28. Cariou E, Bennani Smires Y, Victor G, Robin G, Ribes D, Pascal P et al (2017) Diagnostic score for the detection of cardiac amyloidosis in patients with left ventricular hypertrophy and impact on prognosis. Amyloid 24:101–109. https://doi.org/10.1080/13506129.2017.1333956

    Article  PubMed  Google Scholar 

  29. Moore PT, Burrage MK, Mackenzie E, Law WP, Korczyk D, Mollee P (2017) The utility of (99m)Tc-DPD scintigraphy in the diagnosis of cardiac amyloidosis: an Australian experience. Heart Lung Circ 26:1183–1190. https://doi.org/10.1016/j.hlc.2016.12.017

    Article  PubMed  Google Scholar 

  30. Daquarti GJ, Meretta A, Corneli M, Costabel JP, Diez M, Masoli OH (2018) Bone seeking tracers’ scintigraphy for the diagnosis of transthyretin cardiac amyloidosis. Medicina 78:395–398

    PubMed  Google Scholar 

  31. Ramsay SC, Lindsay K, Fong W, Patford S, Younger J, Atherton J (2018) Tc-HDP quantitative SPECT/CT in transthyretin cardiac amyloid and the development of a reference interval for myocardial uptake in the non-affected population. Eur J Hybrid Imaging 2:17. https://doi.org/10.1186/s41824-018-0035-1

    Article  PubMed  Google Scholar 

  32. Kircher M, Ihne S, Brumberg J, Morbach C, Knop S, Kortum KM et al (2019) Detection of cardiac amyloidosis with (18)F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging 46:1407–1416. https://doi.org/10.1007/s00259-019-04290-y

    Article  PubMed  Google Scholar 

  33. Tsutsui Y, Kubota T, Kato S, Nozoe M, Suematsu N, Okabe M et al (2019) Utility of (99m)Tc-pyrophosphate scintigraphy in diagnosing transthyretin cardiac amyloidosis in real-world practice. Circ Rep 1:277–285. https://doi.org/10.1253/circrep.CR-19-0015

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bellevre D, Bailliez A, Delelis F, Blaire T, Agostini D, Mouquet F et al (2020) Quantitation of myocardial (99m)Tc-HMDP uptake with new SPECT/CT cadmium zinc telluride (CZT) camera in patients with transthyretin-related cardiac amyloidosis: ready for clinical use? J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02274-2

    Article  PubMed  Google Scholar 

  35. Caobelli F, Braun M, Haaf P, Wild D, Zellweger MJ (2020) Quantitative (99m)Tc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: feasibility and correlation with visual scores. J Nucl Cardiol 27:1456–1463. https://doi.org/10.1007/s12350-019-01893-8

    Article  PubMed  Google Scholar 

  36. Flaherty KR, Morgenstern R, Pozniakoff T, DeLuca A, Castano A, Maurer MS et al (2020) (99m)technetium pyrophosphate scintigraphy with cadmium zinc telluride cameras is a highly sensitive and specific imaging modality to diagnose transthyretin cardiac amyloidosis. J Nucl Cardiol 27:371–380. https://doi.org/10.1007/s12350-019-01831-8

    Article  PubMed  Google Scholar 

  37. Malka N, Abulizi M, Kharoubi M, Oghina S, Galat A, Le Bras F et al (2020) Extracardiac soft tissue uptake, evidenced on early (99m)Tc-HMDP SPECT/CT, helps typing cardiac amyloidosis and demonstrates high prognostic value. Eur J Nucl Med Mol Imaging 47:2396–2406. https://doi.org/10.1007/s00259-020-04753-7

    Article  CAS  PubMed  Google Scholar 

  38. Masri A, Bukhari S, Ahmad S, Nieves R, Eisele YS, Follansbee W et al (2020) Efficient 1-hour technetium-99m pyrophosphate imaging protocol for the diagnosis of transthyretin cardiac amyloidosis. Circ Cardiovasc Imaging 13:e010249. https://doi.org/10.1161/CIRCIMAGING.119.010249

    Article  PubMed  PubMed Central  Google Scholar 

  39. Musumeci MB, Cappelli F, Russo D, Tini G, Canepa M, Milandri A et al (2020) Low sensitivity of bone scintigraphy in detecting Phe64Leu mutation-related transthyretin cardiac amyloidosis. JACC Cardiovasc Imaging 13:1314–1321. https://doi.org/10.1016/j.jcmg.2019.10.015

    Article  PubMed  Google Scholar 

  40. Santarelli MF, Genovesi D, Positano V, Di Sarlo R, Scipioni M, Giorgetti A et al (2020) Cardiac amyloidosis detection by early bisphosphonate (99mTc-HMDP) scintigraphy. J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02239-5

    Article  PubMed  Google Scholar 

  41. Scully PR, Morris E, Patel KP, Treibel TA, Burniston M, Klotz E et al (2020) DPD quantification in cardiac amyloidosis: a novel imaging biomarker. JACC Cardiovasc Imaging 13:1353–1363. https://doi.org/10.1016/j.jcmg.2020.03.020

    Article  PubMed  PubMed Central  Google Scholar 

  42. Singh V, Cuddy S, Kijewski MF, Park MA, Taylor A, Taqueti VR et al (2020) Inter-observer reproducibility and intra-observer repeatability in (99m)Tc-pyrophosphate scan interpretation for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02353-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takasone K, Katoh N, Takahashi Y, Abe R, Ezawa N, Yoshinaga T et al (2020) Non-invasive detection and differentiation of cardiac amyloidosis using (99m)Tc-pyrophosphate scintigraphy and (11)C-Pittsburgh compound B PET imaging. Amyloid 27:266–274. https://doi.org/10.1080/13506129.2020.1798223

    Article  CAS  PubMed  Google Scholar 

  44. Tamarappoo B, Otaki Y, Manabe O, Hyun M, Cantu S, Arnson Y et al (2020) Simultaneous Tc-99m PYP/Tl-201 dual-isotope SPECT myocardial imaging in patients with suspected cardiac amyloidosis. J Nucl Cardiol 27:28–37. https://doi.org/10.1007/s12350-019-01753-5

    Article  PubMed  Google Scholar 

  45. Usuku H, Takashio S, Yamamoto E, Kinoshita Y, Nishi M, Oike F et al (2020) Usefulness of relative apical longitudinal strain index to predict positive (99m) Tc-labeled pyrophosphate scintigraphy findings in advanced-age patients with suspected transthyretin amyloid cardiomyopathy. Echocardiography 37:1774–1783. https://doi.org/10.1111/echo.14892

    Article  PubMed  Google Scholar 

  46. Zhang LX, Martineau P, Finnerty V, Giraldeau G, Parent MC, Harel F et al (2020) Comparison of 18F-sodium fluoride positron emission tomography imaging and 99mTc-pyrophosphate in cardiac amyloidosis. J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02425-5

    Article  PubMed  Google Scholar 

  47. Asif T, Gomez J, Singh V, Doukky R, Nedeltcheva A, Malhotra S (2021) Comparison of planar with tomographic pyrophosphate scintigraphy for transthyretin cardiac amyloidosis: perils and pitfalls. J Nucl Cardiol 28:104–111. https://doi.org/10.1007/s12350-020-02328-5

    Article  PubMed  Google Scholar 

  48. Gallini C, Tutino F, Martone R, Ciaccio A, Costanzo EN, Taborchi G et al (2021) Semi-quantitative indices of cardiac uptake in patients with suspected cardiac amyloidosis undergoing 99mTc-HMDP scintigraphy. J Nucl Cardiol 28:90–99. https://doi.org/10.1007/s12350-019-01643-w

    Article  PubMed  Google Scholar 

  49. Lofbacka V, Axelsson J, Pilebro B, Suhr OB, Lindqvist P, Sundstrom T (2021) Cardiac transthyretin amyloidosis (99m)Tc-DPD SPECT correlates with strain echocardiography and biomarkers. Eur J Nucl Med Mol Imaging 48:1822–1832. https://doi.org/10.1007/s00259-020-05144-8

    Article  CAS  PubMed  Google Scholar 

  50. Miller RJH, Cadet S, Mah D, Pournazari P, Chan D, Fine NM et al (2021) Diagnostic and prognostic value of technetium-99m pyrophosphate uptake quantitation for transthyretin cardiac amyloidosis. J Nucl Cardiol. https://doi.org/10.1007/s12350-021-02563-4

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nitsche C, Scully PR, Patel KP, Kammerlander AA, Koschutnik M, Dona C et al (2021) Prevalence and outcomes of concomitant aortic stenosis and cardiac amyloidosis. J Am Coll Cardiol 77:128–139. https://doi.org/10.1016/j.jacc.2020.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Poterucha TJ, Elias P, Bokhari S, Einstein AJ, DeLuca A, Kinkhabwala M et al (2021) Diagnosing transthyretin cardiac amyloidosis by technetium Tc 99m pyrophosphate: a test in evolution. JACC Cardiovasc Imaging 14:1221–1231. https://doi.org/10.1016/j.jcmg.2020.08.027

    Article  PubMed  Google Scholar 

  53. Ren C, Ren J, Tian Z, Du Y, Hao Z, Zhang Z et al (2021) Assessment of cardiac amyloidosis with (99m)Tc-pyrophosphate (PYP) quantitative SPECT. EJNMMI Phys 8:3. https://doi.org/10.1186/s40658-020-00342-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schatka I, Bingel A, Schau F, Bluemel S, Messroghli DR, Frumkin D et al (2021) An optimized imaging protocol for [(99m)Tc]Tc-DPD scintigraphy and SPECT/CT quantification in cardiac transthyretin (ATTR) amyloidosis. J Nucl Cardiol. https://doi.org/10.1007/s12350-021-02715-6

    Article  PubMed  PubMed Central  Google Scholar 

  55. Treglia G, Glaudemans A, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R et al (2018) Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur J Nucl Med Mol Imaging 45:1945–1955. https://doi.org/10.1007/s00259-018-4013-4

    Article  CAS  PubMed  Google Scholar 

  56. Lofbacka V, Suhr OB, Pilebro B, Wixner J, Sundstrom T, Lindmark K et al (2021) Combining ECG and echocardiography to identify transthyretin cardiac amyloidosis in heart failure. Clin Physiol Funct Imaging 41:408–416. https://doi.org/10.1111/cpf.12715

    Article  CAS  PubMed  Google Scholar 

  57. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD et al (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 3:155–164. https://doi.org/10.1016/j.jcmg.2009.09.023

    Article  PubMed  Google Scholar 

  58. Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O et al (2009) Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 120:1203–1212. https://doi.org/10.1161/CIRCULATIONAHA.108.843334

    Article  CAS  PubMed  Google Scholar 

  59. Zhao L, Tian Z, Fang Q (2016) Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: a systematic review and meta-analysis. BMC Cardiovasc Disord 16:129. https://doi.org/10.1186/s12872-016-0311-6

    Article  PubMed  PubMed Central  Google Scholar 

  60. Regis C, Harel F, Martineau P, Gregoire J, Abikhzer G, Juneau D et al (2020) Tc-99m-pyrophosphate scintigraphy for the diagnosis of ATTR cardiac amyloidosis: comparison of quantitative and semi-quantitative approaches. J Nucl Cardiol 27:1808–1815. https://doi.org/10.1007/s12350-020-02205-1

    Article  PubMed  Google Scholar 

  61. Dorbala S, Park MA, Cuddy S, Singh V, Sullivan K, Kim S et al (2021) Absolute quantitation of cardiac (99m)Tc-pyrophosphate using cadmium-zinc-telluride-based SPECT/CT. J Nucl Med 62:716–722. https://doi.org/10.2967/jnumed.120.247312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quarta CC, Zheng J, Hutt D, Grigore SF, Manwani R, Sachchithanantham S et al (2021) 99mTc-DPD scintigraphy in immunoglobulin light chain (AL) cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeab095

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gnanasegaran G, Cook G, Adamson K, Fogelman I (2009) Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med 39:380–395. https://doi.org/10.1053/j.semnuclmed.2009.07.003

    Article  PubMed  Google Scholar 

  64. Buroni FE, Persico MG, Lodola L, Concardi M, Aprile C (2015) In vitro study: binding of Tc-DPD to synthetic amyloid fibrils. Curr Issues Pharm Med Sci 28:231–235. https://doi.org/10.1515/cipms-2015-0077

    Article  CAS  Google Scholar 

  65. Jovanovic V, Maksin T, Rastovac M, Bzenic J (1983) Comparative quality control of 99mTc-pyrophosphate and 99mTc-diphosphonate radiopharmaceuticals. Eur J Nucl Med 8:179–182. https://doi.org/10.1007/BF00252891

    Article  CAS  PubMed  Google Scholar 

  66. McAfee JG, Krauss DJ, Subramanian G, Thomas FD, Roskopf M, Ritter C et al (1983) Comparison of 99mTc phosphate and diphosphonate complexes in experimental renal infarcts. Invest Radiol 18:479–484. https://doi.org/10.1097/00004424-198309000-00014

    Article  CAS  PubMed  Google Scholar 

  67. Abulizi M, Cottereau AS, Guellich A, Vandeventer S, Galat A, Van Der Gucht A et al (2018) Early-phase myocardial uptake intensity of (99m)Tc-HMDP vs (99m)Tc-DPD in patients with hereditary transthyretin-related cardiac amyloidosis. J Nucl Cardiol 25:217–222. https://doi.org/10.1007/s12350-016-0707-9

    Article  PubMed  Google Scholar 

  68. Eldhagen P, Berg S, Lund LH, Sorensson P, Suhr OB, Westermark P (2021) Transthyretin amyloid deposits in lumbar spinal stenosis and assessment of signs of systemic amyloidosis. J Intern Med 289:895–905. https://doi.org/10.1111/joim.13222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sueyoshi T, Ueda M, Jono H, Irie H, Sei A, Ide J et al (2011) Wild-type transthyretin-derived amyloidosis in various ligaments and tendons. Hum Pathol 42:1259–1264. https://doi.org/10.1016/j.humpath.2010.11.017

    Article  CAS  PubMed  Google Scholar 

  70. Samoes R, Taipa R, Valdrez K, Goncalves I, Melo Pires M, da Silva MA et al (2017) Amyloid detection in the transverse carpal ligament of patients with hereditary ATTR V30M amyloidosis and carpal tunnel syndrome. Amyloid 24:73–77. https://doi.org/10.1080/13506129.2017.1313222

    Article  CAS  PubMed  Google Scholar 

  71. Ansari-Lari MA, Ali SZ (2004) Fine-needle aspiration of abdominal fat pad for amyloid detection: a clinically useful test? Diagn Cytopathol 30:178–181. https://doi.org/10.1002/dc.10370

    Article  PubMed  Google Scholar 

  72. Garcia Y, Collins AB, Stone JR (2018) Abdominal fat pad excisional biopsy for the diagnosis and typing of systemic amyloidosis. Hum Pathol 72:71–79. https://doi.org/10.1016/j.humpath.2017.11.001

    Article  PubMed  Google Scholar 

  73. Quarta CC, Gonzalez-Lopez E, Gilbertson JA, Botcher N, Rowczenio D, Petrie A et al (2017) Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur Heart J 38:1905–1908. https://doi.org/10.1093/eurheartj/ehx047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LS provided the ideas for this review, and DR completed the analysis of the data and the writing of the manuscript. The search and inclusion of the literature were done by both authors.

Corresponding author

Correspondence to Long Sun.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare relevant to this article’s content.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, D., Sun, L. Diagnostic efficacy of bone scintigraphy in transthyretin cardiac amyloidosis: an updated systematic review and Bayesian bivariate meta-analysis. Clin Transl Imaging 10, 85–98 (2022). https://doi.org/10.1007/s40336-021-00471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-021-00471-8

Keywords

Navigation