Skip to main content

Advertisement

Log in

Absorbed-dose calculation for treatment of liver neoplasms with 90Y-microspheres

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

The aim of this review article is to present a state-of-the-art of the absorbed-dose calculation for the selective internal radiation therapy (SIRT) of liver neoplasms with 90Y-microspheres. The review focuses on the following aspects: activity quantification, partition model, medical internal radiation dose (MIRD) formalism, three-dimensional dosimetry, micro-scale dosimetry, and radiobiological modeling. 99mTc-macro-aggregated albumin (MAA) with single-photon emission tomography (SPECT) serves as a surrogate for 90Y-microspheres for treatment planning and predictive dosimetry. Iterative reconstruction with physic modeling to compensate quantification biases is now a standard for activity quantification. For post-implantation dosimetry, direct 90Y quantification with time of flight positron emission tomography has demonstrated good accuracy. The partition model is a simple and well-known approach for tumor, normal liver, and lung dosimetry measured from 99mTc-MAA-SPECT, while the MIRD equations can provide more detailed schemes for pre- and post-implantation dosimetry. 3D dosimetry allows considering heterogeneous activity and material distribution thanks to voxel-based quantification and energy deposition modeling. For the latter, dose-kernel convolution or local energy deposition approaches are widespread. Micro-scale dosimetry studies have highlighted high-absorbed-dose heterogeneities at the microscopic level. Microscopic models were developed and can be incorporated into macro-scale dosimetry. More recently, radiobiological models have been applied to calculate the biological effective dose. 90Y-microspheres dosimetry for SIRT is an active field of research in all its aspects. Its ease of implementation in a clinical setting along with the development of microscopic and radiobiological models should contribute to better handle treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. ICRP (1985) ICRP Publication 44: protection of the patient in radiation therapy. Pergamon Press, Oxford

  2. Sgouros G, Hobbs RF (2014) Dosimetry for radiopharmaceutical therapy. Semin Nucl Med 44:172–178

    Article  PubMed  PubMed Central  Google Scholar 

  3. Breedis C, Young G (1954) The blood supply of neoplasms in the liver. Am J Pathol 30:969–977

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ariel IM (1965) Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 Radiating Microspheres). Ann Surg 162:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mantravadi RV, Spigos DG, Tan WS, Felix EL (1982) Intraarterial yttrium 90 in the treatment of hepatic malignancy. Radiology 142:783–786

    Article  CAS  PubMed  Google Scholar 

  6. Burton MA, Gray BN, Jones C, Coletti A (1989) Intraoperative dosimetry of 90Y in liver tissue. Int J Radiat Appl Instrum Part B Nucl Med Biol 16:495–498

    Article  CAS  Google Scholar 

  7. Shepherd FA, Rotstein LE, Houle S et al (1992) A phase I dose escalation trial of yttrium-90 microspheres in the treatment of primary hepatocellular carcinoma. Cancer 70:2250–2254

    Article  CAS  PubMed  Google Scholar 

  8. Ho S, Lau WY, Leung TW et al (1996) Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 23:947–952

    Article  CAS  PubMed  Google Scholar 

  9. Leung TWT, Lau W-Y, Ho SKW et al (1995) Radiation pneumonitis after selective internal radiation treatment with intraarterial 90Yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 33:919–924

    Article  CAS  PubMed  Google Scholar 

  10. Leung WT, Lau WY, Ho SK et al (1994) Measuring lung shunting in hepatocellular carcinoma with intrahepatic-arterial technetium-99 m macroaggregated albumin. J Nucl Med 35:70–73

    CAS  PubMed  Google Scholar 

  11. Flamen P, Vanderlinden B, Delatte P et al (2008) Muimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol 53(6591–6603):9

    Google Scholar 

  12. Garin E, Lenoir L, Rolland Y et al (2012) Dosimetry based on 99 mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 53:255–263

    Article  CAS  PubMed  Google Scholar 

  13. Kao YH, Hock Tan AE, Burgmans MC et al (2012) Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 53:559–566

    Article  CAS  PubMed  Google Scholar 

  14. Chiesa C, Mira M, Maccauro M et al (2012) A dosimetric treatment planning strategy in radioembolization of hepatocarcinoma with 90Y glass microspheres. Q J Nucl Med Mol Imaging 56:503–508

    CAS  PubMed  Google Scholar 

  15. Kennedy A, Dezarn W, Weiss A (2011) Patient specific 3D image-based radiation dose estimates for 90Y microsphere hepatic radioembolization in metastatic tumors. J Nucl Med Radiat Ther 2(1):1–8

    CAS  Google Scholar 

  16. Dieudonné A, Garin E, Laffont S et al (2011) Clinical feasibility of fast 3-dimensional dosimetry of the liver for treatment planning of hepatocellular carcinoma with 90Y-microspheres. J Nucl Med 52:1930–1937

    Article  PubMed  Google Scholar 

  17. Petitguillaume A, Bernardini M, Hadid L et al (2014) Three-dimensional personalized Monte Carlo dosimetry in 90Y resin microspheres therapy of hepatic metastases: nontumoral liver and lungs radiation protection considerations and treatment planning optimization. J Nucl Med 55:405–413

    Article  CAS  PubMed  Google Scholar 

  18. Kao YH, Steinberg JD, Tay Y-S et al (2013) Post-radioembolization yttrium-90 PET/CT - part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Res 3:57

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hung JC, Redfern MG, Mahoney DW et al (1996) Evaluation of macroaggregated albumin particle sizes for use in pulmonary shunt patient studies. J Am Pharm Assoc (Washington,DC : 1996) 40:46–51

    Article  Google Scholar 

  20. Bult W, Vente MAD, Zonnenberg BA et al (2009) Microsphere radioembolization of liver malignancies: current developments. Q J Nucl Med Mol Imaging 53:325–335

    CAS  PubMed  Google Scholar 

  21. Wondergem M, Smits MLJ, Elschot M et al (2013) 99 mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 54:1294–1301

    Article  CAS  PubMed  Google Scholar 

  22. Jiang M, Fischman A, Nowakowski FS (2012) Segmental perfusion differences on paired Tc-99 m macroaggregated albumin (MAA) hepatic perfusion imaging and Yttrium-90 (Y-90) Bremsstrahlung imaging studies in SIR-sphere radioembolization: associations with angiography. J Nucl Med Radiat Therapy 03:1–5

    Article  Google Scholar 

  23. Lhommel R, van Elmbt L, Goffette P et al (2010) Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 37:1654–1662

    Article  PubMed  Google Scholar 

  24. Selwyn RG, Nickles RJ, Thomadsen BR et al (2007) A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 65:318–327

    Article  CAS  PubMed  Google Scholar 

  25. Carlier T, Eugène T, Bodet-milin C et al (2013) Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT. EJNMMI Res 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  26. Willowson KP, Tapner M, Investigator Team QUEST, Bailey DL (2015) A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres: The QUEST Phantom Study. Eur J Nucl Med Mol Imaging 42:1202–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walrand S, Hesse M, Demonceau G et al (2011) Yttrium-90-labeled microsphere tracking during liver selective internal radiotherapy by bremsstrahlung pinhole SPECT: feasibility study and evaluation in an abdominal phantom. EJNMMI Res 1:32

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rong X, Du Y, Ljungberg M et al (2012) Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Med Phys 39:2346–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bin He DuY, Segars WP et al (2009) Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake. Med Phys 36:612–619

    Article  PubMed  Google Scholar 

  30. He B, Frey EC (2006) Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents. Phys Med Biol 51:3967–3981

    Article  CAS  PubMed  Google Scholar 

  31. Plyku D, Loeb DM, Prideaux AR et al (2015) Strengths and weaknesses of a planar whole-body method of (153)Sm dosimetry for patients with metastatic osteosarcoma and comparison with three-dimensional dosimetry. Cancer Biotherapy Radiopharm 30:369–379

    Article  CAS  Google Scholar 

  32. Bardiès M, Buvat I (2011) Dosimetry in nuclear medicine therapy: what are the specifics in image quantification for dosimetry?. Q J Nucl Med Mol Imaging 55:5–20

    PubMed  Google Scholar 

  33. Dewaraja YK, Frey EC, Sgouros G et al (2012) MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med 53:1310–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng L, Hobbs RF, Segars PW et al (2013) Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters. Phys Med Biol 58:3631–3647

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elschot M, Lam MGEH, Van Den Bosch MAAJ et al (2013) Quantitative Monte Carlo-based 90Y SPECT reconstruction. J Nucl Med 54:1557–1563

    Article  CAS  PubMed  Google Scholar 

  36. Rault E, Staelens S, Van Holen R et al (2010) Fast simulation of yttrium-90 bremsstrahlung photons with GATE. Med Phys 37:2943

    Article  CAS  PubMed  Google Scholar 

  37. Shen S, DeNardo GL, Yuan A et al (1994) Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 35:1381–1389

    CAS  PubMed  Google Scholar 

  38. Heard S, Flux GD, Guy MJ, Ott RJ (2004) Monte Carlo simulation of 90Y Bremsstrahlung imaging. IEEE Symp Conf Record Nucl Sci 6:3579–3583

    Google Scholar 

  39. Mansberg R, Sorensen N, Mansberg V, Van der Wall H (2007) Yttrium 90 Bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake. Eur J Nucl Med Mol Imaging 34:1887

    Article  PubMed  Google Scholar 

  40. Rong X, Du Y, Frey EC (2012) A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Phys Med Biol 57:3711–3725

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rong X, Frey EC (2013) A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT. Med Phys 40:082504

    Article  PubMed  PubMed Central  Google Scholar 

  42. Minarik D, Sjögreen Gleisner K, Ljungberg M (2008) Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol 53:5689–5703

    Article  CAS  PubMed  Google Scholar 

  43. Carlier T, Willowson KP, Fourkal E et al (2015) (90)Y -PET imaging: exploring limitations and accuracy under conditions of low counts and high random fraction. Med Phys 42:4295–4309

    Article  PubMed  Google Scholar 

  44. van Elmbt L, Vandenberghe S, Walrand S et al (2011) Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol 56:6759–6777

    Article  PubMed  Google Scholar 

  45. Willowson K, Forwood N, Jakoby BW et al (2012) Quantitative (90)Y image reconstruction in PET. Med Phys 39:7153–7159

    Article  CAS  PubMed  Google Scholar 

  46. Elschot M, Vermolen BJ, Lam MGEH et al (2013) Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One 8:e55742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Attarwala AA, Molina-Duran F, Büsing K-A et al (2014) Quantitative and qualitative assessment of Yttrium-90 PET/CT imaging. PLoS One 9:e110401

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takahashi A, Himuro K, Yamashita Y et al (2015) Monte Carlo simulation of PET and SPECT imaging of 90Y. Med Phys 42:1926–1935

    Article  CAS  PubMed  Google Scholar 

  49. Dezarn WA, Cessna JT, DeWerd LA et al (2011) Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys 38:4824–4845

    Article  PubMed  Google Scholar 

  50. Lau WY, Leung TWT, Ho S et al (1994) Diagnostic pharmaco-scintigraphy with hepatic intraarterial technetium-99m macroaggregated albumin in the determination of tumour to non-tumour uptake ratio in hepatocellular carcinoma. Br J Radiol 67:136–139

    Article  CAS  PubMed  Google Scholar 

  51. Ho S, Lau WY, Leung TWT et al (1997) Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med 24:293–298

    CAS  PubMed  Google Scholar 

  52. Mazzaferro V, Sposito C, Bhoori S et al (2013) Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology (Baltimore, Md) 57:1826–1837

    Article  CAS  Google Scholar 

  53. Sarfaraz M, Kennedy AS, Lodge MA et al (2004) Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma. Med Phys 31:2449

    Article  PubMed  Google Scholar 

  54. Khalil MM (2010) Elements of gamma camera and SPECT systems. In: Basic sciences of nuclear medicine. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 155–178

  55. Bolch WE, Eckerman KF, Sgouros G, Thomas SR (2009) MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med 50:477–484

    Article  CAS  PubMed  Google Scholar 

  56. Siegel JA, Stabin MG (1994) Absorbed fractions for electrons and beta particles in spheres of various sizes. J Nucl Med 35:152–156

    CAS  PubMed  Google Scholar 

  57. Pasciak AS, Erwin WD (2009) Effect of voxel size and computation method on Tc-99m MAA SPECT/CT-based dose estimation for Y-90 microsphere therapy. IEEE Trans Med Imaging 28:1754–1758

    Article  PubMed  Google Scholar 

  58. Ljungberg M, Frey E, Sjögreen K et al (2003) 3D absorbed dose calculations based on SPECT: evaluation for 111-In/90-Y therapy using Monte Carlo simulations. Cancer Biotherapy Radiopharm 18:99–107

    Article  CAS  Google Scholar 

  59. Pasciak AS, Bourgeois AC, Bradley YC (2014) A comparison of techniques for (90)Y PET/CT image-based dosimetry following radioembolization with resin microspheres. Front Oncol 4:121

    PubMed  PubMed Central  Google Scholar 

  60. Erlandsson K, Buvat I, Pretorius PH et al (2012) A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 57:R119–R159

    Article  PubMed  Google Scholar 

  61. Muzic RF, Chen CH, Nelson AD (1998) A method to correct for scatter, spillover, and partial volume effects in region of interest analysis in PET. IEEE Trans Med Imaging 17:202–213

    Article  PubMed  Google Scholar 

  62. Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39:904–911

    CAS  PubMed  Google Scholar 

  63. Chiavassa S, Bardies M, Guiraud-Vitaux F et al (2005) OEDIPE: a personalized dosimetric tool associating voxel-based models with MCNPX. Cancer Biotherapy Radiopharm 20:325–332

    Article  Google Scholar 

  64. Hobbs RF, Wahl RL, Lodge MA et al (2009) 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 50:1844–1847

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dewaraja YK, Wilderman SJ, Ljungberg M et al (2005) Accurate dosimetry in 131 I radionuclide therapy for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46:840–849

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Botta F, Mairani A, Hobbs RF et al (2013) Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images. Phys Med Biol 58:8099–8120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sgouros G, Hobbs RF, Atkins FB et al (2011) Three-dimensional radiobiological dosimetry (3D-RD) with 124I PET for 131I therapy of thyroid cancer. Eur J Nucl Med Mol Imaging 38(Suppl 1):S41–S47

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dieudonné A, Hobbs RF, Lebtahi R et al (2013) Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct Monte Carlo methods. J Nucl Med 54:236–243

    Article  PubMed  Google Scholar 

  69. Kwok CS, Prestwich WV, Wilson BC (1985) Calculation of radiation doses for nonuniformly distributed beta and gamma radionuclides in soft tissue. Med Phys 12:405–412

    Article  CAS  PubMed  Google Scholar 

  70. Sgouros G, Barest G, Thekkumthala J et al (1990) Treatment planning for internal radionuclide therapy: three-dimensional dosimetry for nonuniformly distributed radionuclides. J Nucl Med 31:1884–1891

    CAS  PubMed  Google Scholar 

  71. Akabani G, Hawkins WG, Eckblade MB, Leichner PK (1997) Patient-specific dosimetry using quantitative SPECT imaging and three-dimensional discrete Fourier transform convolution. J Nucl Med 38:308–314

    CAS  PubMed  Google Scholar 

  72. Kolbert KS, Sgouros G, Scott AM et al (1997) Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38:301–308

    CAS  PubMed  Google Scholar 

  73. Bolch WE, Bouchet LG, Robertson JS et al (1999) MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 40:11S–36S

    CAS  PubMed  Google Scholar 

  74. Franquiz JM, Chigurupati S, Kandagatla K (2003) Beta voxel S values for internal emitter dosimetry. Med Phys 30:1030

    Article  CAS  PubMed  Google Scholar 

  75. Pacilio M, Lanconelli N, Lo Meo S et al (2009) Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations. Med Phys 36:1543

    Article  CAS  PubMed  Google Scholar 

  76. Lanconelli N, Pacilio M, Lo Meo S et al (2012) A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol 57:517–533. doi:10.1088/0031-9155/57/2/517

    Article  CAS  PubMed  Google Scholar 

  77. Kennedy A, Dezarn W, Weiss A (2011) Patient specific 3D image-based radiation dose estimates for 90Y microsphere hepatic radioembolization in metastatic tumors. J Nucl Med Radiat Therapy 01:1–8

    Article  Google Scholar 

  78. Dieudonné A, Hobbs RF, Bolch WE et al (2010) Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size. J Nucl Med 51:1600–1607

    Article  PubMed  PubMed Central  Google Scholar 

  79. Amato E, Minutoli F, Pacilio M et al (2012) An analytical method for computing voxel S values. Med Phys 39:6808–6817

    Article  CAS  PubMed  Google Scholar 

  80. Fernández M’A, Hänscheid H, Mauxion T et al (2013) A fast method for rescaling voxel S values for arbitrary voxel sizes in targeted radionuclide therapy from a single Monte Carlo calculation. Med Phys 40:082502

  81. Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44:R99–R155

    Article  PubMed  Google Scholar 

  82. Carlsson AK, Ahnesjö A (2000) Point kernels and superposition methods for scatter dose calculations in brachytherapy. Phys Med Biol 45:357–382

    Article  CAS  PubMed  Google Scholar 

  83. Carlsson AK, Ahnesjö A (2000) The collapsed cone superposition algorithm applied to scatter dose calculations in brachytherapy. Med Phys 27:2320–2332

    Article  CAS  PubMed  Google Scholar 

  84. Janicki C, Duggan DM, Gonzalez A et al (1999) Dose model for a beta-emitting stent in a realistic artery consisting of soft tissue and plaque. Med Phys 26:2451–2460

    Article  CAS  PubMed  Google Scholar 

  85. Sanchez-Garcia M, Gardin I, Lebtahi R, Dieudonné A (2014) A new approach for dose calculation in targeted radionuclide therapy (TRT) based on collapsed cone superposition: validation with (90)Y. Phys Med Biol 59:4769–4784

    Article  PubMed  Google Scholar 

  86. Srinivas SM, Natarajan N, Kuroiwa J et al (2014) Determination of radiation absorbed dose to primary liver tumors and normal liver tissue using post-radioembolization (90)Y PET. Front Oncol 4:255

    Article  PubMed  PubMed Central  Google Scholar 

  87. Russell JL, Carden JL, Herron HL (1988) Dosimetry calculations for Ytrrium-90 used in the treatment of liver cancer. Endocurietherapy/Hyperthrmia Oncol 4:171–186

    Google Scholar 

  88. Gray BN, Burton MA, Kelleher D et al (1990) Tolerance of the liver to the effects of yttrium-90 radiation. Int J Radiat Oncol Biol Phys 18:619–623

    Article  CAS  PubMed  Google Scholar 

  89. Fox RA, Klemp PFB, Egan G et al (1991) Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys 21:463–467

    Article  CAS  PubMed  Google Scholar 

  90. Roberson PL, Ten Haken RK, McShan DL et al (1992) Three-dimensional tumor dosimetry for hepatic yttrium-90-microsphere therapy. J Nucl Med 33:735–738

    CAS  PubMed  Google Scholar 

  91. Pillai KM, McKeever PE, Knutsen CA et al (1991) Microscopic analysis of arterial microsphere distribution in rabbit liver and hepatic VX2 tumor. Sel Cancer Ther 7:39–48

    Article  CAS  PubMed  Google Scholar 

  92. Zavgorodni SF (1996) A model for dose estimation in therapy of liver with intraarterial microspheres. Phys Med Biol 41:2463–2480

    Article  CAS  PubMed  Google Scholar 

  93. Campbell AM, Bailey IH, Burton MA (2001) Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 46:487–498

    Article  CAS  PubMed  Google Scholar 

  94. Kennedy AS, Nutting C, Coldwell D et al (2004) Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 60:1552–1563

    Article  CAS  PubMed  Google Scholar 

  95. Gulec SA, Sztejnberg ML, Siegel JA et al (2010) Hepatic structural dosimetry in (90)Y microsphere treatment: a Monte Carlo modeling approach based on lobular microanatomy. J Nucl Med 51:301–310

    Article  PubMed  Google Scholar 

  96. Walrand S, Hesse M, Chiesa C et al (2014) The low hepatic toxicity per Gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. J Nucl Med 55:135–140

    Article  CAS  PubMed  Google Scholar 

  97. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694. doi:10.1259/0007-1285-62-740-679

    Article  CAS  PubMed  Google Scholar 

  98. Cremonesi M, Ferrari M, Bartolomei M et al (2008) Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging 35:2088–2096

    Article  CAS  PubMed  Google Scholar 

  99. Barone R, Borson-Chazot F, Valkema R et al (2005) Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 46(Suppl 1):99S–106S

    CAS  PubMed  Google Scholar 

  100. Bodei L, Cremonesi M, Ferrari M et al (2008) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35:1847–1856

    Article  CAS  PubMed  Google Scholar 

  101. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110

    Article  CAS  PubMed  Google Scholar 

  102. O’Donoghue JA (1999) Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med 40:1337–1341

    PubMed  Google Scholar 

  103. Hobbs RF, Wahl RL, Frey EC et al (2013) Radiobiologic optimization of combination radiopharmaceutical therapy applied to myeloablative treatment of non-Hodgkin lymphoma. J Nucl Med 54:1535–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Dieudonné.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieudonné, A., Hobbs, R.F., Sanchez-Garcia, M. et al. Absorbed-dose calculation for treatment of liver neoplasms with 90Y-microspheres. Clin Transl Imaging 4, 273–282 (2016). https://doi.org/10.1007/s40336-016-0195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0195-6

Keywords

Navigation