Skip to main content

Advertisement

Log in

Challenges of quantification of TSPO in the human brain

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

The first positron emission tomography (PET) imaging studies in humans of the translocator protein 18 kDa (TSPO) were conducted in the 1980s with a primary interest in quantifying the binding in peripheral organs such as the heart, spleen and kidneys to what was then known as the peripheral benzodiazepine receptor. However, the number of studies rapidly increased when the focus of the research shifted to the brain, and [11C](R)-PK11195 became de facto the reference radiotracer for all in vivo TSPO binding assays. For the quantitative analysis of the data which initially was performed with compartmental models and plasma input functions, this led to the adoption of the reference tissue kinetic models which were developed at the same time in the mid 1990s. In contrast to many neuro-receptor studies of the dopaminergic or serotonergic system, it was not possible to anatomically define a brain region devoid of TSPO that could serve as a reference region. Instead, data-driven techniques were adopted that extracted at the voxel level reference tissue kinetics without incorporating anatomical information. In this review, an overview of the development, use and challenges of the various quantitative analysis methods for TSPO brain PET data is given. The different approaches to (automatically) extract reference tissue input curves from the dynamic images are discussed. Descriptions of key PET imaging studies exploring TSPO binding quantitatively in disease populations are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

B avail :

Density of sites available to bind radioligand in vivo

BBB:

Blood–brain barrier

BF:

Blood flow

BP:

Binding potential

BPF :

Binding potential relative to the free ligand concentration in plasma

BPND :

Binding potential relative to the non-displaceable binding in tissue

CBF:

Cerebral blood flow

CNS:

Central nervous system

CT:

Computed tomography

HAB:

High-affinity binder

HD:

Huntington’s disease

HPLC:

High-performance liquid chromatography

HHRT:

High Resolution Research Tomograph

INMiND:

Imaging of neuroinflammation in neurodegenerative diseases

K D :

Dissociation constant

LAB:

Low-affinity binder

MAB:

Mixed affinity binder

MCI:

Mild cognitive impairment

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

PK11195:

1-(2-Chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide

PVE:

Partial volume effect

ROI:

Region of interest

SD:

Standard deviation

SPE:

Solid-phase extraction

SRTM:

Simplified reference tissue model

SRTMV:

Simplified reference tissue model with vascular component

SUV:

Standard uptake value

SVCA4:

Supervised cluster analysis with four kinetic classes

SVCA6:

Supervised cluster analysis with six kinetic classes

TAC:

Time–activity curve

TLC:

Thin-layer chromatography

TSPO:

Translocator protein 18 kDa

V ND :

Non-displaceable volume of distribution

V T :

Total volume of distribution

References

  1. Charbonneau P, Syrota A, Crouzel C, Valois JM, Prenant C, Crouzel M (1986) Peripheral-type benzodiazepine receptors in the living heart characterized by positron emission tomography. Circulation 73:476–483. doi:10.1161/01.CIR.73.3.476

    Article  CAS  PubMed  Google Scholar 

  2. Bergström M, Mosskin M, Ericson K, Ehrin E, Thorell JO, von Holst H, Norén G, Persson A, Halldin C, Stone-Elander S (1986) Peripheral benzodiazepine binding sites in human gliomas evaluated with positron emission tomography. Acta Radiol Suppl 369:409–411

    PubMed  Google Scholar 

  3. Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, McKeever PE, Wieland DM, Kilbourn MR, Starosta-Rubinstein S, Mancini WR, Kuhl DE, Greenberg HS, Young AB (1989) PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 26:752–758. doi:10.1002/ana.410260611

    Article  CAS  PubMed  Google Scholar 

  4. Ramsay SC, Weiller C, Myers R, Cremer JE, Luthra SK, Lammertsma AA, Frackowiak RS (1992) Monitoring by PET of macrophage accumulation in brain after ischaemic stroke. Lancet 339:1054–1055. doi:10.1016/0140-6736(92)90576-O

    Article  CAS  PubMed  Google Scholar 

  5. Blomqvist G, Pauli S, Farde L, Eriksson L, Persson A, Halldin C (1989) Dynamic models of reversible ligand binding. In: Beckers C, Goffinet A, Bol A (eds) Positron emission tomography in clinical research and clinical diagnosis: tracer modelling and radioreceptors. Kluwer Academic Publishers, Dardrecht, pp 35–44. ISBN 0-7923-0254-0

    Google Scholar 

  6. Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones AKP (1991) Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab 11:1–9. doi:10.1038/jcbfm.1991.1

    Article  CAS  PubMed  Google Scholar 

  7. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, Frackowiak RSJ (1996) Comparison of methods for analysis of clinical [11C] raclopride studies. J Cereb Blood Flow Metab 16:42–52. doi:10.1097/00004647-199601000-00005

    Article  CAS  PubMed  Google Scholar 

  8. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158. doi:10.1006/nimg.1996.0066

    Article  CAS  PubMed  Google Scholar 

  9. Logan J, Fowler JS, Volkow ND, Wang G-J, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840. doi:10.1097/00004647-199609000-00008

    Article  CAS  PubMed  Google Scholar 

  10. Pike VW, Halldin C, Crouzel C, Barre L, Nutt DJ, Osman S, Shah F, Turton DR, Waters SL (1993) Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—current status. Nucl Med Biol 20:503–525. doi:10.1016/0969-8051(93)90082-6

    Article  CAS  PubMed  Google Scholar 

  11. De Vos F, Dumont F, Santens P, Slegers G, Dierckx R, De Reuck J (1999) High-performance liquid chromatographic determination of [11C]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide in mouse plasma and tissue and in human plasma. J Chromatogr B Biomed Sci Appl 736:61–66

    Article  PubMed  Google Scholar 

  12. Greuter HNJM, van Ophemert PLB, Luurtsema G, van Berckel BNM, Franssen EJF, Windhorst BD, Lammertsma AA (2005) Optimizing an online SPE–HPLC method for analysis of (R)-[11C]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide [(R)-[11C]PK11195] and its metabolites in humans. Nucl Med Biol 32:307–312. doi:10.1016/j.nucmedbio.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J (1994) Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 21:573–581. doi:10.1016/0969-8051(94)90022-1

    Article  CAS  PubMed  Google Scholar 

  14. Jaremko Ł, Jaremko M, Giller K, Becker S, Zweckstetter M (2014) Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 343:1363–1366. doi:10.1126/science.1248725

    Article  CAS  PubMed  Google Scholar 

  15. Roivainen A, Någren K, Hirvonen J, Oikonen V, Virsu P, Tolvanen T, Rinne JO (2009) Whole-body distribution and metabolism of [N-methyl-11C](R)-1-(2-chlorophenyl)-N-(1-methylpropyl)-3-isoquinolinecarboxamide in humans; an imaging agent for in vivo assessment of peripheral benzodiazepine receptor activity with positron emission tomography. Eur J Nucl Med Mol Imaging 36:671–682. doi:10.1007/s00259-008-1000-1

    Article  CAS  PubMed  Google Scholar 

  16. Jučaite A, Cselényi Z, Arvidsson A, Åhlberg G, Julin P, Varnäs K, Stenkrona P, Andersson J, Halldin C, Farde L (2012) Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain—a PET study in control subjects. EJNMMI Res 2:15. doi:10.1186/2191-219X-2-15

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lamare F, Hinz R, Gaemperli O, Pugliese F, Mason JC, Spinks TJ, Camici PG, Rimoldi OE (2011) Detection and quantification of large vessel inflammation with 11C-(R)-PK11195 PET/CT. J Nucl Med 52:33–39. doi:10.2967/jnumed.110.079038

    Article  PubMed  Google Scholar 

  18. Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE (1995) PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 36:2207–2210

    CAS  PubMed  Google Scholar 

  19. Rozemuller JM, van der Valk P, Eikelenboom P (1992) Activated microglia and cerebral amyloid deposits in Alzheimer’s disease. Res Immunol 143:646–649. doi:10.1016/0923-2494(92)80050-U

    Article  CAS  PubMed  Google Scholar 

  20. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015. doi:10.1038/nm1484

    CAS  PubMed  Google Scholar 

  21. Doble A, Malgouris C, Daniel M, Daniel N, Imbault F, Basbaum A, Uzan A, Gueremy C, Le Fur G (1987) Labelling of peripheral-type benzodiazepine binding sites in human brain with [3H]PK 11195: anatomical and subcellular distribution. Brain Res Bull 18:49–61. doi:10.1016/0361-9230(87)90033-5

    Article  CAS  PubMed  Google Scholar 

  22. Owen DR, Guo Q, Kalk NJ, Colasanti A, Kalogiannopoulou D, Dimber R, Lewis YL, Libri V, Barletta J, Ramada-Magalhaes J, Kamalakaran A, Nutt DJ, Passchier J, Matthews PM, Gunn RN, Rabiner EA (2014) Determination of [11C]PBR28 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab 34:989–994. doi:10.1038/jcbfm.2014.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, Rhodes C, Pulford DJ, Bennacef I, Parker CA, StJean PL, Cardon LR, Mooser VE, Matthews PM, Rabiner EA, Rubio JP (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5. doi:10.1038/jcbfm.2011.147

    Article  CAS  PubMed  Google Scholar 

  24. Lassen NA, Bartenstein PA, Lammertsma AA, Prevett MC, Turton DR, Luthra SK, Osman S, Bloomfield PM, Jones T, Patsalos PN, O’Connell MT, Duncan JS, Vanggaard Andersen J (1995) Benzodiazepine receptor quantification in vivo in humans using [11C] flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab 15:152–165. doi:10.1038/jcbfm.1995.17

    Article  CAS  PubMed  Google Scholar 

  25. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN (2010) Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab 30:46–50. doi:10.1038/jcbfm.2009.190-&gt

    Article  PubMed  Google Scholar 

  26. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227. doi:10.1002/ana.410150302

    Article  CAS  PubMed  Google Scholar 

  27. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang S-C, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539. doi:10.1038/sj.jcbfm.9600493

    Article  CAS  PubMed  Google Scholar 

  28. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991) Compartmental analysis of [11C] flumazenil kinetics for the estimation of ligand receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744. doi:10.1038/jcbfm.1991.130

    Article  CAS  PubMed  Google Scholar 

  29. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P (1993) Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 13:24–42. doi:10.1038/jcbfm.1993.6

    Article  CAS  PubMed  Google Scholar 

  30. Friedlander G, Kennedy JW, Macias ES, Miller JM (1981) Chapter 5 Equations of radioactive decay and growth. In: Nuclear and radiochemistry, 3rd edn. Wiley, New York, pp 191–205

  31. Slifstein M (2008) Revisiting an old issue: the discrepancy between tissue ratio-derived binding parameters and kinetic modeling-derived parameters after a bolus of the serotonin transporter radioligand 123I-ADAM. J Nucl Med 49:176–178. doi:10.2967/jnumed.107.046631

    Article  PubMed  Google Scholar 

  32. Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608. doi:10.1016/S0969-8051(01)00214-1

    Article  CAS  PubMed  Google Scholar 

  33. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  34. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  35. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467. doi:10.1016/S0140-6736(01)05625-2

    Article  CAS  PubMed  Google Scholar 

  36. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuromage 6:279–287. doi:10.1006/nimg.1997.0303

    Article  CAS  Google Scholar 

  37. Herholz K, Patlak CS (1987) The influence of tissue heterogeneity on results of fitting nonlinear model equations to regional tracer uptake curves: with an application to compartmental models used in positron emission tomography. J Cereb Blood Flow Metab 7:214–229. doi:10.1038/jcbfm.1987.47

    Article  CAS  PubMed  Google Scholar 

  38. Mahalanobis PC (1936) On the generalised distance in statistics. Proc Natl Inst Sci India 12:49–55

    Google Scholar 

  39. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. doi:10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  40. O’Sullivan F (1993) Imaging radiotracer model parameters in PET: a mixture analysis approach. IEEE Trans Med Imaging 12:399–412. doi:10.1109/42.241867

    Article  PubMed  Google Scholar 

  41. Ashburner J, Haslam J, Taylor C, Cunningham VJ, Jones T (1996) A cluster analysis approach for the characterization of dynamic PET data. In: Myers R, Cunningham V, Bailey D, Jones T (eds) Quantification of brain function using PET. Academic Press, San Diego, pp 301–306. doi:10.1016/B978-012389760-2/50061-X. ISBN 0-12-389760-2

    Chapter  Google Scholar 

  42. Myers R, Gunn RN, Cunningham VJ, Banati RB, Jones T (1999) Cluster analysis and the reference tissue model in the analysis of clinical [11C]PK11195 PET. J Cereb Blood Flow Metab 19:S789

    Google Scholar 

  43. Cagnin A, Myers R, Gunn RN, Turkheimer FE, Cunningham VJ, Brooks DJ, Jones T, Banati RB (2000) Imaging activated microglia in the aging human brain. In: Gjedde A, Hansen SB, Knudsen GM, Paulson OB (eds) Physiological imaging of the brain with PET. Academic Press, San Diego, pp 361–367. ISBN 0-12-285751-8

    Google Scholar 

  44. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123:2321–2337. doi:10.1093/brain/123.11.2321

    Article  PubMed  Google Scholar 

  45. Kropholler MA, Boellaard R, van Berckel BN, Schuitemaker A, Kloet RW, Lubberink MJ, Jonker C, Scheltens P, Lammertsma AA (2007) Evaluation of reference regions for (R)-[11C]PK11195 studies in Alzheimer’s disease and mild cognitive impairment. J Cereb Blood Flow Metab 27:1965–1974. doi:10.1038/sj.jcbfm.9600488

    Article  CAS  PubMed  Google Scholar 

  46. Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, Gerhard A, Hinz R, Tai YF, Brooks DJ (2007) Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med 48:158–167

    PubMed  Google Scholar 

  47. Chen J, Gunn S, Nixon M, Myers R, Gunn R (2000) A supervised method for PET reference region extraction. In: Arridge S, Todd-Pokropek A (eds) Medical image understanding and analysis MIUA 2000: proceedings of the fourth annual conference. University College London, UK, pp 179–182. ISBN 1-901725-11-1

    Google Scholar 

  48. Lawson CL, Hanson RJ (1995) Solving least squares problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. ISBN 0-89871-356-0

  49. Cunningham VJ, Jones T (1993) Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13:15–23. doi:10.1038/jcbfm.1993.5

    Article  CAS  PubMed  Google Scholar 

  50. Hinz R, Jones M, Bloomfield PM, Boellaard R, Turkheimer FE, Tyrrell PJ (2008) Reference tissue kinetics extraction from [11C]-(R)-PK11195 scans on the High Resolution Research Tomograph (HRRT). Neuroimage 41(suppl. 2):T65. doi:10.1016/j.neuroimage.2008.04.035

    Article  Google Scholar 

  51. Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR, Hulme S, Georgiou RF, Hinz R, Gerhard A, Vail A, Prenant C, Julyan P, Maroy R, Brown G, Smigova A, Herholz K, Kassiou M, Crossman D, Francis S, Proctor SD, Russell JC, Hopkins SJ, Tyrrell PJ, Rothwell NJ, Allan SM (2011) Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain Behav Immun 25:1113–1122. doi:10.1016/j.bbi.2011.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boellaard R, Turkheimer FE, Hinz R, Schuitemaker A, Scheltens P, van Berckel BNM, Lammertsma AA (2008) Performance of a modified supervised cluster algorithm for extracting reference region input functions from (R)-[11C]PK11195 brain PET studies. In: IEEE Nuclear Sciece Symposium Conference Record, NSS ′08, Dresden, pp 5400–5402

  53. Folkersma H, Boellaard R, Vandertop WP, Kloet RW, Lubberink M, Lammertsma AA, van Berckel BNM (2009) Reference tissue models and blood–brain barrier disruption: lessons from (R)-[11C]PK11195 in traumatic brain injury. J Nucl Med 50:1975–1979. doi:10.2967/jnumed.109.067512

    Article  PubMed  Google Scholar 

  54. Costes N, Blanc C, Bouillot C, Yankam Njiwa J, Bolbos R, Bouvard S, Chauveau F, Le Bars D, Turkheimer FE, Hammers A (2013) Supervised clustering for determining a reference region for [11C]PK11195 PET: adaptation to rat PET studies. In: 11th international conference on quantification of brain function with PET (BrainPET’13), Shanghai, China, 20–23 May 2013

  55. Su Z, Herholz K, Gerhard A, Roncaroli F, Du Plessis D, Jackson A, Turkheimer F, Hinz R (2013) [11C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches. Eur J Nucl Med Mol Imaging 40:1406–1419. doi:10.1007/s00259-013-2447-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holland GP, Hunter JA, Su Z, Kobylecki C, Gerhard A, Hinz R (2014) Extraction of reference tissue kinetics from [11C]-(R)PK11195 brain scans: limits of applications. In: 10th international symposium on functional neuroreceptor mapping (NRM) of the living brain, Egmond aan Zee, the Netherlands, 21–24 May 2014. Abstract Book, 117. http://www.vumc.nl/afdelingen-themas/50095/69479/Program-Abstractbook.pdf?version=1

  57. Yaqub M, van Berckel BN, Schuitemaker A, Hinz R, Turkheimer FE, Tomasi G, Lammertsma AA, Boellaard R (2012) Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[11C]PK11195 brain PET studies. J Cereb Blood Flow Metab 32:1600–1608. doi:10.1038/jcbfm.2012.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kropholler MA, Boellaard R, Schuitemaker A, van Berckel BN, Luurtsema G, Windhorst AD, Lammertsma AA (2005) Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J Cereb Blood Flow Metab 25:842–851. doi:10.1038/sj.jcbfm.9600092

    Article  CAS  PubMed  Google Scholar 

  59. Kropholler MA, Boellaard R, Schuitemaker A, Folkersma H, van Berckel BN, Lammertsma AA (2006) Evaluation of reference tissue models for the analysis of [11C](R)-PK11195 studies. J Cereb Blood Flow Metab 26:1431–1441. doi:10.1038/sj.jcbfm.9600289

    Article  CAS  PubMed  Google Scholar 

  60. Tomasi G, Edison P, Bertoldo A, Roncaroli F, Singh P, Gerhard A, Cobelli C, Brooks DJ, Turkheimer FE (2008) Novel reference region model reveals increased microglial and reduced vascular binding of 11C-(R)-PK11195 in patients with Alzheimer’s disease. J Nucl Med 49:1249–1256. doi:10.2967/jnumed.108.050583

    Article  PubMed  Google Scholar 

  61. Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW, Hume SP, Grasby PM, Lammertsma AA Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY- 100635 for PET. Neuroimage 8: 426–440. doi: 10.1006/nimg.1998.0379

  62. Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A (2014) Kinetic modeling without accounting for the vascular component impairs the quantification of [11C]PBR28 brain PET data. J Cereb Blood Flow Metab 34:1060–1069. doi:10.1038/jcbfm.2014.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175. doi:10.1002/ana.20338

    Article  CAS  PubMed  Google Scholar 

  64. Schuitemaker A, van der Doef TF, Boellaard R, van der Flier WM, Yaqub M, Windhorst AD, Barkhof F, Jonker C, Kloet RW, Lammertsma AA, Scheltens P, van Berckel BN (2012) Microglial activation in healthy aging. Neurobiol Aging 33:1067–1072. doi:10.1016/j.neurobiolaging.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  65. Kumar A, Muzik O, Shandal V, Chugani D, Chakraborty P, Chugani HT (2012) Evaluation of age-related changes in translocator protein (TSPO) in human brain using 11C-[R]-PK11195 PET. J Neuroinflammation 9:232. doi:10.1186/1742-2094-9-232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gulyás B, Vas A, Tóth M, Takano A, Varrone A, Cselényi Z, Schain M, Mattsson P, Halldin C (2011) Age and disease related changes in the translocator protein (TSPO) system in the human brain: positron emission tomography measurements with [11C]vinpocetine. Neuroimage 56:1111–1121. doi:10.1016/j.neuroimage.2011.02.020

    Article  PubMed  Google Scholar 

  67. Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, Wilson AA, Meyer JH, Houle S, Mizrahi R (2014) Neuroinflammation in healthy aging: a PET study using a novel translocator protein 18 kDa (TSPO) radioligand, [18F]-FEPPA. Neuroimage 84:868–875. doi:10.1016/j.neuroimage.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  68. Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, Knol DL, Windhorst AD, Luurtsema G, Barkhof F, Jonker C, Lammertsma AA, Scheltens P, van Berckel BN (2013) Microglial activation in Alzheimer’s disease: an (R)-[11C]PK11195 positron emission tomography study. Neurobiol Aging 34:128–136. doi:10.1016/j.neurobiolaging.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  69. Hunter HJA, Hinz R, Gerhard A, Talbot PS, Su Z, Holland G, Hopkins SJ, Griffiths CEM, Kleyn CE (2015) Brain inflammation and psoriasis: a [11C]-(R)-PK11195 positron emission tomography study. Br J Dermatol. doi:10.1111/bjd.13788

    Google Scholar 

  70. Golla SSV, Boellaard R, Oikonen V, Hoffmann A, van Berckel BNM, Windhorst AD, Virta J, Haaparanta-Solin M, Luoto P, Savisto N, Solin O, Valencia R, Thiele A, Eriksson J, Schuit RC, Lammertsma AA, Rinne JO (2015) Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab 35:766–772. doi:10.1038/jcbfm.2014.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Christian Prenant and Gavin D. Brown for their explanations provided on the radiochemistry, David J. Brooks for the invitation to Århus and the stimulating discussions on [11C](R)-PK11195 data analysis there, Federico Roncaroli for his advice on neuropathological data and the European Union’s Seventh Framework Programme (FP7/2007-2013) for financial support under the Grant agreement HEALTH-F2-2011-278850 (Imaging of Neuroinflammation in Neurodegenerative Diseases) bringing the INMiND consortium together.

Authors’ contributions

R Hinz: Design and content planning of the article; literature search and review; manuscript writing, formatting and editing; correspondence with the editorial office. R Boellaard: Design and content planning of the article; literature search and review; manuscript writing and editing; data processing for the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Hinz.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval and informed consent

All procedures performed in studies, with human participants, in which the authors were involved, were conducted in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in those studies.

Human rights and animal standards

This review article does not contain studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinz, R., Boellaard, R. Challenges of quantification of TSPO in the human brain. Clin Transl Imaging 3, 403–416 (2015). https://doi.org/10.1007/s40336-015-0138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0138-7

Keywords

Navigation