Skip to main content

Advertisement

Log in

Expansion of the RASopathies

  • Clinical Genetics (J Stoler, Section editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The Ras/mitogen-activated protein kinase (MAPK) pathway is essential in the regulation of cell cycle, differentiation, growth, cell senescence and apoptosis, all of which are critical to normal development. A class of neurodevelopmental disorders, RASopathies, is caused by germline mutations in genes of the Ras/MAPK pathway. Through the use of whole exome sequencing and targeted sequencing of selected genes in cohorts of panel-negative RASopathy patients, several new genes have been identified.

Recent Findings

New genes have been identified and include RIT1, SOS2, RASA2, RRAS and SYNGAP1, that likely represent new, albeit rare, causative RASopathy genes. In addition, A2ML1, LZTR1, MYST4, SPRY1 and MAP3K8 may represent new rare genes for RASopathies, but, additional functional studies regarding the mutations are warranted. In addition, recent reports have demonstrated that chromosomal copy number variation in regions encompassing Ras/MAPK pathway genes may be a novel pathogenetic mechanism expanding the RASopathies.

Summary

The identification of potential new genes and chromosomal copy number variation being associated with the RASopathies is very exciting and broadens our understanding of the biology of Ras signaling and the RASopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently are highlighted as: • Of importance

  1. • Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet. 2013;14:355–69. This is a current review of the RASopathies including phenotypic features and genetics.

  2. Wallace MR, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science. 1990;249(4965):181–6.

    Article  CAS  PubMed  Google Scholar 

  3. Cawthon RM, et al. Identification and characterization of transcripts from the neurofibromatosis 1 region: the sequence and genomic structure of EVI2 and mapping of other transcripts. Genomics. 1990;7(4):555–65.

    Article  CAS  PubMed  Google Scholar 

  4. Viskochil D, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell. 1990;62(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  5. Tartaglia M, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–8.

    Article  CAS  PubMed  Google Scholar 

  6. Roberts AE, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007;39(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  7. Tartaglia M, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet. 2007;39(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  8. Razzaque MA, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet. 2007;39(8):1013–7.

    Article  CAS  PubMed  Google Scholar 

  9. Pandit B, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39(8):1007–12.

    Article  CAS  PubMed  Google Scholar 

  10. Schubbert S, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  11. Cirstea IC, et al. A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet. 2010;42(1):27–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cordeddu V, et al. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat Genet. 2009;41(9):1022–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niemeyer CM, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42(9):794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinelli S, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet. 2010;87(2):250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Digilio MC, et al. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet. 2002;71(2):389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brems H, et al. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet. 2007;39(9):1120–6.

    Article  CAS  PubMed  Google Scholar 

  17. Aoki Y, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005;37(10):1038–40.

    Article  CAS  PubMed  Google Scholar 

  18. Niihori T, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38(3):294–6.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Viciana P, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science. 2006;311(5765):1287–90.

    Article  CAS  PubMed  Google Scholar 

  20. Eerola I, et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet. 2003;73(6):1240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rajalingam K, et al. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007;1773(8):1177–95.

    Article  CAS  PubMed  Google Scholar 

  22. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24(1):21–44.

    Article  CAS  PubMed  Google Scholar 

  23. Marin TM, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 2011;121(3):1026–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen PC, et al. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome-associated Sos1 mutation. J Clin Invest. 2010;120(12):4353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aoki Y, et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 2013;93(1):173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rusyn EV, et al. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene. 2000;19(41):4685–94.

    Article  CAS  PubMed  Google Scholar 

  27. Bertola DR, et al. Further evidence of the importance of RIT1 in Noonan syndrome. Am J Med Genet A. 2014;164A(11):2952–7.

    Article  PubMed  Google Scholar 

  28. Gos M, et al. Contribution of RIT1 mutations to the pathogenesis of Noonan syndrome: four new cases and further evidence of heterogeneity. Am J Med Genet A. 2014;164A(9):2310–6.

    Article  PubMed  Google Scholar 

  29. • Chen PC, et al. Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proc Natl Acad Sci USA. 2014;111(31):11473–8. This is a very comprehensive study using whole-exome-sequencing and gene targeted sequencing to discover new genes associated with the RASopathies.

  30. Shi GX, Andres DA. Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Mol Cell Biol. 2005;25(2):830–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamamoto GL, et al. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet. 2015;52(6):413–21.

    Article  CAS  PubMed  Google Scholar 

  32. Cordeddu V, et al. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome. Hum Mutat. 2015;36(11):1080–7.

    Article  CAS  PubMed  Google Scholar 

  33. Viskochil D. Genetics of neurofibromatosis 1 and the NF1 gene. J Child Neurol. 2002;17(8):562–70 discussion 571–2, 646–51.

    Article  PubMed  Google Scholar 

  34. Arafeh R, et al. Recurrent inactivating RASA2 mutations in melanoma. Nat Genet. 2015;47(12):1408–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flex E, et al. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet. 2014;23(16):4315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. • Jeyabalan N, Clement JP. SYNGAP1: mind the gap. Front Cell Neurosci. 2016;10:32. This is a current through review on the RasGAP protein SynGAP.

  38. Hamdan FF, et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med. 2009;360(6):599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamdan FF, et al. De novo SYNGAP1 mutations in nonsyndromic intellectual disability and autism. Biol Psychiatry. 2011;69(9):898–901.

    Article  CAS  PubMed  Google Scholar 

  40. Komiyama NH, et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002;22(22):9721–32.

    CAS  PubMed  Google Scholar 

  41. Muhia M, et al. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP. Eur J Neurosci. 2010;31(3):529–43.

    Article  PubMed  Google Scholar 

  42. Vissers LE, et al. Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome. Eur J Hum Genet. 2015;23(3):317–24.

    Article  CAS  PubMed  Google Scholar 

  43. Galliano MF, et al. A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J Biol Chem. 2006;281(9):5780–9.

    Article  CAS  PubMed  Google Scholar 

  44. Schepens I, et al. The protease inhibitor alpha-2-macroglobulin-like-1 is the p170 antigen recognized by paraneoplastic pemphigus autoantibodies in human. PLoS One. 2010;5(8):e12250.

    Article  PubMed  PubMed Central  Google Scholar 

  45. van Trier DC, et al. External ear anomalies and hearing impairment in Noonan Syndrome. Int J Pediatr Otorhinolaryngol. 2015;79(6):874–8.

    Article  PubMed  Google Scholar 

  46. Barnes H, et al. Tyrosine-phosphorylated low density lipoprotein receptor-related protein 1 (Lrp1) associates with the adaptor protein SHC in SRC-transformed cells. J Biol Chem. 2001;276(22):19119–25.

    CAS  PubMed  Google Scholar 

  47. Craig J, et al. The LDL receptor-related protein 1 (LRP1) regulates the PDGF signaling pathway by binding the protein phosphatase SHP-2 and modulating SHP-2- mediated PDGF signaling events. PLoS One. 2013;8(7):e70432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nacak TG, et al. The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem. 2006;281(8):5065–71.

    Article  CAS  PubMed  Google Scholar 

  49. Dhanoa BS, et al. Update on the Kelch-like (KLHL) gene family. Hum Genomics. 2013;7:13.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Piotrowski A, et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet. 2014;46(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kraft M, et al. Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest. 2011;121(9):3479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clark AM, et al. Mutational activation of the MAP3K8 protooncogene in lung cancer. Genes Chromosomes Cancer. 2004;41(2):99–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shchelochkov OA, et al. Duplication of chromosome band 12q24.11q24.23 results in apparent Noonan syndrome. Am J Med Genet A. 2008;146A(8):1042–8.

    Article  PubMed  Google Scholar 

  54. Graham JM Jr, et al. Genomic duplication of PTPN11 is an uncommon cause of Noonan syndrome. Am J Med Genet A. 2009;149A(10):2122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Geckinli BB, et al. Clinical report of a patient with de novo trisomy 12q23.1q24.33. Genet Couns. 2015;26(4):393–400.

    CAS  PubMed  Google Scholar 

  56. Chen JL, et al. Rare copy number variations containing genes involved in RASopathies: deletion of SHOC2 and duplication of PTPN11. Mol Cytogenet. 2014;7:28.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo C, et al. Microduplication of 3p25.2 encompassing RAF1 associated with congenital heart disease suggestive of Noonan syndrome. Am J Med Genet A. 2012;158A(8):1918–23.

    Article  PubMed  Google Scholar 

  58. Lissewski C, et al. Copy number variants including RAS pathway genes-How much RASopathy is in the phenotype? Am J Med Genet A. 2015;167A(11):2685–90.

    Article  PubMed  Google Scholar 

  59. Yu S, Graf WD. BRAF gene deletion broadens the clinical spectrum neuro-cardio-facial-cutaneous syndromes. J Child Neurol. 2011;26(12):1593–6.

    Article  PubMed  Google Scholar 

  60. Nowaczyk MJ, et al. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy? Clin Genet. 2014;85(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  61. Risheg H, et al. Clinical comparison of overlapping deletions of 19p13.3. Am J Med Genet A. 2013;161A(5):1110–6.

    Article  PubMed  Google Scholar 

  62. • Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. This paper provides guidelines that will help standardize the criteria for the assignment of a new gene variant as being causative for a given disorder.

Download references

Acknowledgments

The authors thank patients and families for their ongoing support of research in Genomic Medicine. This work was supported in part by NIH Grant HD048502 (K.A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Rauen.

Ethics declarations

Disclosure

William E. Tidyman and Katherine A. Rauen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Clinical Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tidyman, W.E., Rauen, K.A. Expansion of the RASopathies. Curr Genet Med Rep 4, 57–64 (2016). https://doi.org/10.1007/s40142-016-0100-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-016-0100-7

Keywords

Navigation