Skip to main content

Advertisement

Log in

Isolation of side population cells from endometrial cancer cells using a violet laser diode

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) possess the ability for self-renewal, differentiation, and tumorigenesis and play a role in cancer recurrence and metastasis. CSCs are usually sorted in analysis into side population (SP) cells using ultraviolet (UV) laser (350 nm) excitation; they cannot be stained with Hoechst 33342 because of their efflux ability. However, it is difficult to avoid cell damage using a UV laser. Therefore, we attempted to isolate CSCs using a violet laser (407 nm) excitation to avoid cellular DNA damage. We sorted SP cells and main population (MP) cells from a human endometrial cancer cell line using the FACSAria system equipped with a violet laser and analyzed the biological properties of these cells. SP cells exhibited drug efflux, self-renewal, differentiation abilities, and tumorigenicity. It was found that v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) expression was significantly higher in SP cells than in MP cells. Our results suggest that CSCs exist in the SP fraction sorted using the FACSAria system equipped with a violet laser, which presents a useful tool to isolate small populations of viable putative CSCs from solid tumors and can be used to identify and characterize CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res. 2007;67:3716–24.

    Article  CAS  PubMed  Google Scholar 

  2. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Wang H, Li Z, et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE. 2008;3:e3769.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat Commun. 2011;18:162.

    Article  Google Scholar 

  6. Lin S, Long HX, Xiang T, Zhu B, Xie RK. Isolation and identification of cancer stem cells from primary human ovarian cancer tissues. Zhonghua Zhong Liu Za Zhi. 2011;33:896–9.

    PubMed  Google Scholar 

  7. Li F, Tiede B, Massagué J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007;17:3–14.

    Article  CAS  PubMed  Google Scholar 

  8. Sheridan C, Kishimoto H, Fuchs RK, et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8:R59.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  CAS  PubMed  Google Scholar 

  10. Blanpain C, Mohrin M, Sotiropoulou PA, Passegué E. DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell. 2011;8:16–29.

    Article  CAS  PubMed  Google Scholar 

  11. Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101:14228–33.

    Article  CAS  PubMed  Google Scholar 

  12. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 2004;101:781–6.

    Article  CAS  PubMed  Google Scholar 

  13. Britton KM, Eyre R, Harvey IJ, et al. Breast cancer, side population cells and ABCG2 expression. Cancer Lett. 2012;323:97–105.

    Article  CAS  PubMed  Google Scholar 

  14. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA. 2006;103:11154–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lee H, Kim JB, Park SY, Kim SS, Kim H. Combination effect of paclitaxel and hyaluronic acid on cancer stem-like side population cells. J Biomed Nanotechnol. 2013;9:299–302.

    Article  CAS  PubMed  Google Scholar 

  16. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24:506–13.

    Article  CAS  PubMed  Google Scholar 

  17. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12.

    Article  CAS  PubMed  Google Scholar 

  18. Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells. 2002;20:11–20.

    Article  CAS  PubMed  Google Scholar 

  19. Mathew G, Timm EA Jr, Sotomayor P, et al. ABCG2-mediated DyeCycle Violet efflux defined side population in benign and malignant prostate. Cell Cycle. 2009;8:1053–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  21. Jobo T, Arai T, Sato R, Kuramoto H. Clinicopathologic relevance of asymptomatic endometrial carcinoma. Acta Cytol. 2003;47:611–5.

    Article  PubMed  Google Scholar 

  22. Bilgin T, Ozuysal S, Ozan H. A comparison of three histological grading systems in endometrial cancer. Arch Gynecol Obstet. 2005;272:23–5.

    Article  PubMed  Google Scholar 

  23. Enomoto T, Inoue M, Perantoni AO, Terakawa N, Tanizawa O, Rice JM. K-ras activation in neoplasms of human reproductive tract. Cancer Res. 1990;50:6139–45.

    CAS  PubMed  Google Scholar 

  24. Enomoto T, Inoue M, Perantoni AO, et al. K-ras activation in premalignant and malignant epithelial lesions of the human uterus. Cancer Res. 1991;51:5308–14.

    CAS  PubMed  Google Scholar 

  25. Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57:3935–40.

    CAS  PubMed  Google Scholar 

  26. Kong D, Suzuki A, Zou TT, et al. PTEN1 is frequently mutated in primary endometrial carcinomas. Nat Genet. 1997;17:143–4.

    Article  CAS  PubMed  Google Scholar 

  27. Risinger JI, Hayes AK, Berchuck A, Barrett JC. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 1997;57:4736–8.

    CAS  PubMed  Google Scholar 

  28. Khalifa MA, Mannel RS, Haraway SD, Walker J, Min KW. Expression of EGFR, HER-2/neu, p53 and PCNA in endometrioid, serous papillary, and clear cell endometrial adenocarcinomas. Gynecol Oncol. 1994;53:84–92.

    Article  CAS  PubMed  Google Scholar 

  29. Inoue M, Okayama A, Fujita M, et al. Clinicopathological characteristics of p53 overexpression in endometrial cancers. Int J Cancer. 1994;58:14–9.

    Article  CAS  PubMed  Google Scholar 

  30. Kuramoto H, Nishida M, Morisawa T, et al. Establishment and characterization of human endometrial cancer cell lines. Ann NY Acad Sci. 1991;622:402–21.

    Article  CAS  PubMed  Google Scholar 

  31. Weigelt B, Warne PH, Lambros MB, Reis-Filho JS, Downward J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin Cancer Res. 2013;19:3533–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Simpson C, Pearce DJ, Bonnet D, Davies D. Out of the blue: a comparison of Hoechst side population (SP) analysis of murine bone marrow using 325, 363 and 407 nm excitation sources. J Immunol Methods. 2006;310:171–81.

    Article  CAS  PubMed  Google Scholar 

  33. Wulf GG, Wang RY, Kuehnle I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001;98:1166–73.

    Article  CAS  PubMed  Google Scholar 

  34. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res. 2005;65:6207–19.

    Article  CAS  PubMed  Google Scholar 

  35. Engelmann K, Shen H, Finn OJ. MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res. 2008;68:2419–26.

    Article  CAS  PubMed  Google Scholar 

  36. Shi Y, Fu X, Hua Y, Han Y, Lu Y, Wang J. The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells. PLoS ONE. 2012;7:e33358.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chen Y, Zhao J, Luo Y, Wang Y, Wei N, Jiang Y. Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2012;32:697–703.

    Article  PubMed  Google Scholar 

  38. Ross EA, Anderson N, Micklem HS. Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J Exp Med. 1982;155:432–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66:1883–90.

    Article  CAS  PubMed  Google Scholar 

  40. Shimizu T, Ishikawa T, Sugihara E, et al. c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene. 2010;29:5687–99.

    Article  CAS  PubMed  Google Scholar 

  41. Motohara T, Masuko S, Ishimoto T, et al. Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis. 2011;32:1597–606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Makoto Nishimori, Tsubasa Akiyama, Ougi Igawa, Minami Endo, and Marie Nakashima (Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts) for their contributions to this study.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Ohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomiyasu, S., Miyamoto, T., Mori, M. et al. Isolation of side population cells from endometrial cancer cells using a violet laser diode. Human Cell 27, 36–42 (2014). https://doi.org/10.1007/s13577-013-0079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-013-0079-2

Keywords

Navigation