Skip to main content
Log in

A comparison of mathematical models of left ventricular contractility derived from aortic blood flow velocity and acceleration: Application to the esophageal doppler monitor

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

The esophageal Doppler monitor (EDM) has traditionally been used for minimally-invasive and continuous assessment of both cardiac output and intravascular volume. These measurements are based upon a beat-to-beat analysis of the velocity of distal thoracic aortic blood flow. The purpose of this paper is to compare different mathematical models of LV contractile function which could utilize the EDM and subsequently be determined on a continuous basis.

Methods

This study investigated velocity-based contractility models: peak velocity, (PV); ejection fraction, EF; mean ejection fraction, \(\overline {EF} \); and maximum LV radial shortening velocity, \(max\left| {\frac{{dR}}{{dt}}} \right|\) . Also examined are acceleration-based models: mean acceleration, (MA); force, (F); the maximum rate of rise of systolic arterial blood pressure, \(max\left( {\frac{{dP}}{{dt}}} \right)\) ; and kinetic energy, (KE).

Results

When normalized and subsequently observed on a dimensionless basis, acceleration-based models appear to have a statistically significant greater sensitivity to changes in LV contractility. Furthermore, by combining simultaneous arterial blood pressure measurements with EDM-based flow information, the components of afterload and their effects on LV contractility could be estimated.

Conclusions

Future research is warranted to determine the applicability and limitations of the EDM in continuous assessment of LV contractility and related hemodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li JK-J. The arterial circulation: physical principles and clinical applications. Totowa, NJ: Humana Press; 2000.

    Book  Google Scholar 

  2. Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991; 74(1):172–83.

    Article  Google Scholar 

  3. Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, Farber MA, Ford CE, Levy D, Massie BM, Nawaz S. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008; 118(22):2259–67.

    Article  Google Scholar 

  4. Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008; 63(1):44–51.

    Article  Google Scholar 

  5. DiCorte CJ, Latham P, Greilich PE, Cooley MV, Grayburn PA, Jessen ME. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000; 69(6):1782–6.

    Article  Google Scholar 

  6. Nixon JV, Murray RG, Leonard PD, Mitchell JH, Blomqvist CG. Effect of large variations in preload on left ventricular performance characteristics in normal subjects. Circulation. 1982; 65(4):698–703.

    Article  Google Scholar 

  7. Kerkhof PL, Li JK, Heyndrickx GR. Effective arterial elastance and arterial compliance in heart failure patients with preserved ejection fraction. Conf Proc IEEE Eng Med Biol Soc. 2013; 691–4.

    Google Scholar 

  8. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003; 348(20):2007–18.

    Article  Google Scholar 

  9. Atlas GM. Development and application of a logistic-based systolic model for hemodynamic measurements using the esophageal Doppler monitor. Cardiovasc Eng. 2008; 8(3):159–73.

    Article  Google Scholar 

  10. Boulnois JL, Pechoux T. Non-invasive cardiac output monitoring by aortic blood ow measurement with the Dynemo 3000. J Clin Monit Comput. 2000; 16(2):127–40.

    Article  Google Scholar 

  11. Lavandier B, Cathignol D, Muchada R, Xuan BB, Motin J. Noninvasive aortic blood flow measurement using an intraesophageal probe. Ultrasound Med Biol. 1985; 11(3):451–60.

    Article  Google Scholar 

  12. Atlas GM. Can the Esophageal Doppler Monitor Be Used to Clinically Evaluate Peak Left Ventricle dP/dt? Cardiovasc Eng. 2002; 2(1):1–6.

    Article  Google Scholar 

  13. Wolak A, Gransar H, Thomson LE, Friedman JD, Hachamovitch R, Gutstein A, Shaw LJ, Polk D, Wong ND, Saouaf R, Hayes SW, Rozanski A, Slomka PJ, Germano G, Berman DS. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. J Am Coll Cardiol: Cardiovasc Imaging. 2008; 1(2):200–9.

    Article  Google Scholar 

  14. Monnet X, Robert JM, Jozwiak M, Richard C, Teboul JL. Assessment of changes in left ventricular systolic function with oesophageal Doppler. Brit J Anaesth. 2013; 111(5):743–9.

    Article  Google Scholar 

  15. Fogel MA. Use of ejection fraction (or lack thereof), morbidity/mortality and heart failure drug trials: a review. Int J Cardiol. 2002; 84(2–3):119–32.

    Article  Google Scholar 

  16. Isaaz K, Ethevenot G, Admant P, Brembilla B, Pernot C. A new Doppler method of assessing left ventricular ejection force in chronic congestive heart failure. Am J Cardiol. 1989; 64(1):81–7.

    Article  Google Scholar 

  17. Sabbah HN, Khaja F, Brymer JF, McFarland TM, Albert DE, Snyder JE, Goldstein S, Stein PD. Noninvasive evaluation of left ventricular performance based on peak aortic blood acceleration measured with a continuous-wave Doppler velocity meter. Circulation. 1986; 74(2):323–9.

    Article  Google Scholar 

  18. Sabbah HN, Gheorghiade M, Smith ST, Frank DM, Stein PD. Serial evaluation of left ventricular function in congestive heart failure by measurement of peak aortic blood acceleration. Am J Cardiol. 1988; 61(4):367–70.

    Article  Google Scholar 

  19. Atlas G, Mort T. Placement of the esophageal Doppler ultrasound monitor probe in awake patients. Chest. 2001; 119(1):3–9.

    Article  Google Scholar 

  20. English J, Moppett I. Assessment of a new nasally placed transoesophageal Doppler probe in awake volunteers: A-77. Eur J Anaesth. 2004; 21:20.

    Article  Google Scholar 

  21. Wang D, Atlas G. Use of the esophageal Doppler monitor in prone-positioned patients. Conf Proc NY State Soc Anesthesiol. 2009.

    Google Scholar 

  22. Yang SY, Shim JK, Song Y, Seo SJ, Kwak YL. Validation of pulse pressure variation and corrected flow time as predictors of fluid responsiveness in patients in the prone position. Brit J Anaesth. 2013; 110(5):713–20.

    Article  Google Scholar 

  23. Atlas G, Brealey D, Dhar S, Dikta G, Singer M. Additional hemodynamic measurements with an esophageal Doppler monitor: a preliminary report of compliance, force, kinetic energy, and afterload in the clinical setting. J Clin Monitor Comp. 2012; 26(6):473–82.

    Article  Google Scholar 

  24. Jung B, Schneider B, Markl M, Saurbier B, Geibel A, Hennig J. Measurement of left ventricular velocities: phase contrast MRI velocity mapping versus tissue-Doppler-ultrasound in healthy volunteers. J Cardiov Magn Reson. 2004; 6(4):777–83.

    Article  Google Scholar 

  25. Kvitting JP, Ebbers T, Wigström L, Engvall J, Olin CL, Bolger AF. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiov Surg. 2004; 127(6):1602–7.

    Article  Google Scholar 

  26. Lind B, Nowak J, Cain P, Quintana M, Brodin LÅ. Left ventricular isovolumic velocity and duration variables calculated from colour-coded myocardial velocity images in normal individuals. Eur J Echocardiogr. 2004; 5(4):284–93.

    Article  Google Scholar 

  27. Finkelstein SM, Cohn JN, Collins VR, Carlyle PF, Shelley WJ. Vascular hemodynamic impedance in congestive heart failure. Am J Cardiol. 1985; 55(4):423–7.

    Article  Google Scholar 

  28. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. J Am Med Assoc. 1996; 275(20):1557–62.

    Article  Google Scholar 

  29. Yamada H, Oki T, Tabata T, Iuchi A, Ito S. Assessment of left ventricular systolic wall motion velocity with pulsed tissue Doppler imaging: comparison with peak dP/dt of the left ventricular pressure curve. J Am Soc Echocardiogr. 1998; 11(5):442–9.

    Article  Google Scholar 

  30. Tartière JM, Tabet JY, Logeart D, Tartière-Kesri L, Beauvais F, Chavelas C, Cohen Solal A. Noninvasively determined radial dP/dt is a predictor of mortality in patients with heart failure. Am Heart J. 2008; 155(4):758–63.

    Article  Google Scholar 

  31. Atlas G, Li JK-J. Brachial artery differential characteristic impedance: Contributions from changes in young’s modulus and diameter. Cardiovasc Eng. 2009; 9(1):11–7.

    Article  Google Scholar 

  32. Benenson W, Harris JW, Stöcker H, Lutz H. Handbook of physics. 1st ed. New York: Springer; 2002.

    Book  Google Scholar 

  33. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL. 2013 ACCF/ AHA guideline for the management of heart failure: executive summary A report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation. 2013; 128(16):1810–52.

    Article  Google Scholar 

  34. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics-2013 update: a report from the American heart association. Circulation. 2013; 127(1):e1–e245.

    Article  Google Scholar 

  35. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J. Executive summary: heart disease and stroke statistics-2010 update: a report from the American heart association. Circulation. 2010; 121(7):948–54.

    Article  Google Scholar 

  36. Lloyd-Jones D, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, Murabito JM, Vasan RS, Benjamin EJ, Levy D. Lifetime risk for developing congestive heart failure. The framingham heart study. Circulation. 2002; 106(24):3068–72.

    Article  Google Scholar 

  37. Grines CL, Topol EJ, Califf RM, Stack RS, George BS, Kereiakes D, Boswick JM, Kline E, O’Neill WW. Prognostic implications and predictors of enhanced regional wall motion of the noninfarct zone after thrombolysis and angioplasty therapy of acute myocardial infarction. The TAMI Study Groups. Circulation. 1989; 80(2):245–53.

    Article  Google Scholar 

  38. Drzewiecki GM, Li JK-J. (Eds.). Analysis and assessment of cardiovascular function: with 106 figures. New York: Springer; 1998.

    Book  Google Scholar 

  39. Kreyszig, E. Advanced engineering mathematics. 10th ed. Hoboken, NJ: John Wiley & Sons; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Atlas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlas, G., Li, J.KJ. & Kostis, J.B. A comparison of mathematical models of left ventricular contractility derived from aortic blood flow velocity and acceleration: Application to the esophageal doppler monitor. Biomed. Eng. Lett. 4, 301–315 (2014). https://doi.org/10.1007/s13534-014-0147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-014-0147-x

Keywords

Navigation