Skip to main content
Log in

Acute toxicity test of triple fermented barley extracts (fbe) in mice after oral administration

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

The objective of this study was to obtain information on acute (single) oral dose toxicity of triple fermented (using saccharification, Saccharomyces cerevisiae, and Weissella cibaria) barley extracts (Hordeum vulgare L., FBe) in female and male ICR mice, to facilitate the development of natural products as medicinal ingredients and functional food. To investigate toxicity and identify target organs, FBe was orally administered once to female and male ICR mice at doses of 2000, 1000, 500, and 0 mg/kg (of body weight) in a volume of 20 mL/kg, dissolved in distilled water. The mortality, change in body weight, and clinical signs were monitored for 14 days following treatment. Additionally, gross observations of the organs, changes in organ weights, and histopathological measurements of principle organs were compared between treatment and control groups of the same sex. The results showed that a single oral dose of FBe was not associated with mortality in any of the treatment groups over the 14-day experimental period. No FBe treatment-related changes in body and organ weights, clinical signs, or necropsy and histopathological findings were detected in this experiment. The results obtained in this study suggest that FBe is non-toxic in mice and is therefore likely to be safe for clinical use. The LD50 (lethal dose in 50% of animals) and approximate LD in mice following a single oral dose of FBe were determined to be greater than 2000 mg/kg, the recommended dose limit for both female and male rodents. In addition, no specific organ targets or clinical signs were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devipriya, N., Srinivasan, M., Sudheer, A. R. & Menon, V. P. Effect of ellagic acid, a natural polyphenol, on alcohol induced prooxidant and antioxidant imbalance: a drug dose dependent study. Singapore Med. J. 48, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  2. Saravanan, N., Rajasankar, S. & Nalini, N. Antioxidant effect of 2-hydroxy-4-methoxy benzoic acid on ethanol induced hepatotoxicity in rats. J. Pharm. Pharmacol. 59, 445–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Noh, J. R. et al. Hepatoprotective effect of Platycodon grandiflorum against chronic ethanol-induced oxidative stress in C57BL/6 mice. Ann. Nutr. Metab. 58, 224–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J. E. et al. Four-week repeated-dose toxicity study on pinellia extract. Korean J. Lab. Anim. Sci. 19, 127–141 (2003).

    Google Scholar 

  5. Roh, S. S. & Ku, S. K. Mouse single oral dose toxicity study of DHU001, a polyherbal formula. Toxicol. Res. 26, 53–59 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Park, J. H. et al. Single oral dose toxicity study of prebrewed Armeniacae semen in rats. Toxicol. Res. 29, 91–98 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruidavets, J. B. et al. High consumptions of grain, fish, dairy products and combinations of these are associated with a low prevalence of metabolic syndrome. J. Epidemiol. Community Health. 61, 810–817 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hole, A. S. et al. Activation and inhibition of nuclear factor kappa B activity by cereal extracts: role of dietary phenolic acids. J. Agric. Food Chem. 57, 9481–9488 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Giriwono, P. E., Shirakawa, H., Hokazono, H., Goto, T. & Komai, M. Fermented barley extract supplementation maintained antioxidative defense suppressing lipopolysaccharide-induced inflammatory liver injury in rats. Biosci. Biotechnol. Biochem. 75, 1971–1976 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Giriwono, P. E. et al. Extract of fermented barley attenuates chronic alcohol induced liver damage by increasing antioxidative activities. Food Res. Int. 43, 118–124 (2010).

    Article  CAS  Google Scholar 

  11. Bae, E. A. et al. Protective effect of fermented red ginseng on a transient focal ischemic rats. Arch. Pharm. Res. 27, 1136–1140 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Trinh, H. T., Han, S. J., Kim, S. W., Lee, Y. C. & Kim, D. H. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J. Microbiol. Biotechnol. 17, 1127–1133 (2007).

    CAS  PubMed  Google Scholar 

  13. Jung, Y. M. et al. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr. Res. 31, 387–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, C. M., Yi, S. J., Cho, I. J. & Ku, S. K. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients 5, 4316–4332 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jung, H. J. et al. Enhancement of anti-inflammatory and antinociceptive actions of red ginseng extract by fermentation. J. Pharm. Pharmacol. 64, 756–762 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Choi, J. S. et al. Laxative effects of fermented rice extract in rats with loperamide-induced constipation. Exp. Ther. Med. 8, 1847–1854 (2014a).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choi, J. S. et al. Synergistic effect of fermented rice extracts on the probiotic and laxative properties of yoghurt in rats with loperamide-induced constipation. Evid. Based Complement. Alternat. Med. 2014, doi: 10.1155/2014/878503 (2014c).

  18. Choi, J. S., Kim, J. W., Kim, K. Y., Ku, S. K. & Sohn, J. H. Single-dose oral toxicity of fermented rice extracts (FREs): a 14-day observation. Pak. J. Pharm. Sci. 27, 129–137 (2014).

    PubMed  Google Scholar 

  19. Seo, S. H. et al. Single dose oral toxicity study of fermented Soshiho-tang extract in mice. Korean J. Orient. Physiol. Pathol. 26, 47–52 (2012).

    Google Scholar 

  20. Robles-Escajeda, E. et al. Searching in mother nature for anti-cancer activity: anti-proliferative and proapoptotic effect elicited by green barley on leukemia/ lymphoma cells. PLoS One 8, doi:org/10.1371/journal. pone.0073508 (2013).

  21. Mattila, P., Pihlava, J. M. & Hellström, J. Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 53, 8290–8295 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Pérez-Jiménez, J. & Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 53, 5036–5040 (2005).

    Article  PubMed  Google Scholar 

  23. Charalampopoulos, D., Pandiella, S. S. & Webb, C. Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int. J. Food Microbiol. 82, 133–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Ye, X. J., Morimura, S., Han, L. S., Shigematsu, T. & Kida, K. In vitro evaluation of physiological activity of vinegar produced from barley-, sweet potato-, and rice-shochu post-distillation slurry. Biosci. Biotechnol. Biochem. 68, 551–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Yoshimoto, M. et al. Phenolic composition and radical scavenging activity of sweet potato-derived shochu distillery by-products treated with koji. Biosci. Biotechnol. Biochem. 68, 2477–2483 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hokazono, H., Omori, T., Yamamoto, T., Akaoka, I. & Ono, K. Effects of a fermented barley extract on subjects with slightly high serum uric acid or mild hyperuricemia. Biosci. Biotechnol. Biochem. 74, 828–834 (2010b).

    Article  CAS  PubMed  Google Scholar 

  27. Iguchi, T., Kawata, A., Watanabe, T., Mazumder, T. K. & Tanabe, S. Fermented barley extract suppresses the development of atopic dermatitis-like skin lesions in NC/Nga mice, probably by inhibiting inflammatory cytokines. Biosci. Biotechnol. Biochem. 73, 489–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hokazono, H., Omori, T. & Ono, K. Effects of single and combined administration of fermented barley extract and gamma-aminobutyric acid on the development of atopic dermatitis in NC/Nga mice. Biosci. Biotechnol. Biochem. 74, 135–139 (2010a).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, H. B. et al. Ethanol extract of fermented soybean, Chungkookjang, inhibits the apoptosis of mouse spleen, and thymus cells. J. Microbiol. 45, 256–261 (2007).

    PubMed  Google Scholar 

  30. Flecknell, P. in Laboratory Animal Anesthesia 2nd Edn (Harcourt Brace & Company, U.S.A., 1996).

    Google Scholar 

  31. Korea Food and Drug Administration. Testing Guidelines for Safety Evaluation of Drugs, http://www.mfds. go.kr/eng/index.do?nMenuCode=9 (2013).

  32. OECD. OECD guideline (423) for testing of chemicalsacute oral toxicity-acute toxic class method, https:// ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/ oecd_gl423.pdf (2001).

  33. Fox, J. G., Cohen, B. J. & Loew, F. M. in Laboratory animal medicine (Academic Press. Inc., U.S.A., 1984).

    Google Scholar 

  34. Tajima, Y. in Biological reference data book on experimental animals (Soft Science Inc., Japan, 1989).

    Google Scholar 

  35. Banks, W. J. in Applied veterinary histology 2nd Edn (eds Banks, W. J.) 506-526 (Williams & Wilkins, U.S.A., 1986).

  36. Pineda, M. H. in Veterinary endocrinology and reproduction (eds McDonald, L. E. & Pineda, M. H.) 303-354 (Lea & Febiger, U.S.A., 1989).

  37. Lee, W. H., Gam, C. O., Ku, S. K. & Choi, S. H. Single oral dose toxicity test of platycodin D, a saponin from Platycodin radix in mice. Toxicol. Res. 27, 217–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Irwin, S. Comprehensive observational assessment: Ia. A systemic, quantitative procedure for assessing the behavioral and physiological state of the mouse. Psychopharmacology (Berl.) 13, 222–257 (1968).

    CAS  Google Scholar 

  39. Dourish, C. T. in Experimental Psychopharmacology (eds Greenshaw, A. J. & Dourish, C. T.) 352-334 (Humana Press, U.S.A., 1987).

  40. Levene, A. Pathological factors influencing excision of tumors in the head and neck. Part I. Clin. Otolaryngol. Allied Sci. 6, 145–151 (1981).

    Article  CAS  PubMed  Google Scholar 

  41. Ludbrook, J. Update: microcomputer statistics packages. A personal view. Clin. Exp. Pharmacol. Physiol. 24, 294–296 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sae Kwang Ku or Jae-Suk Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JM., Park, DC., Cho, HR. et al. Acute toxicity test of triple fermented barley extracts (fbe) in mice after oral administration. Toxicol. Environ. Health Sci. 9, 332–345 (2017). https://doi.org/10.1007/s13530-017-0339-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0339-8

Keywords

Navigation