Skip to main content
Log in

Environmentally relevant levels of Bisphenol A may accelerate the development of type II diabetes mellitus in adolescent Otsuka Long Evans Tokushima Fatty rats

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Environmental chemicals may contribute to the development of obesity and metabolic disorders such as diabetes. Bisphenol A (BPA) is one of the environmental chemicals that are widely used in daily life. This study was performed to investigate whether low dose BPA exposure can influence the occurrence of type II diabetes mellitus. Four weeks old Otsuka Long Evans Tokushima Fatty (OLETF) rats were randomly assigned to three groups of five animals and each group was given different concentrations of corn oil with BPA (0, 0.001, and 0.1 mg/kg/day). BPA 0.1 mg/kg/ day produced impairment of glucose tolerance, and induced higher insulin (p=0.028) and malondialdehyde levels (p=0.009) in serum than control group. Serum insulin levels in BPA 0.001 mg/kg/day treated group showed significantly higher than the control group (p=0.016). BPA tended to induce down-regulation of PPARγ mRNA and protein expression in white adipose tissue than control. In conclusion, low dose BPA exposed OLETF rats in adolescent period could accelerate the development of diabetes mellitus in younger adult period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grun, F. & Blumberg, B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147, S50–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Newbold, R. R. et al. Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol. Carcino. 46, 783–796 (2007).

    Article  CAS  Google Scholar 

  3. Baillie-Hamilton, P. F. Chemical toxins: a hypothesis to explain the global obesity epidemic. J. Altern. Complement. Med. 8, 185–192 (2002).

    Article  PubMed  Google Scholar 

  4. Dahlman-Wright, K. et al. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 58, 773–781 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Shelby, M. D. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. Ntp. Cerhr. Mon., v, vii–ix, 1-64 passim (2008).

    Google Scholar 

  6. Fernandez, M. F. et al. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod. Toxicol. 24, 259–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Dekant, W. & Volkel, W. Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol. Appl. Pharmacol. 228, 114–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Vandenberg, L. N. et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect. 118, 1055–1070 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Carwile, J. L. & Michels, K. B. Urinary bisphenol A and obesity: NHANES 2003-2006. Environ. Res. 111, 825–830 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang, T. et al. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 97, E223–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Masuno, H., Iwanami, J., Kidani, T., Sakayama, K. & Honda, K. Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol. Sci. 84, 319–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Somm, E. et al. Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Environ. Health Perspect. 117, 1549–1555 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Miyawaki, J., Sakayama, K., Kato, H., Yamamoto, H. & Masuno, H. Perinatal and postnatal exposure to bisphenol A increases adipose tissue mass and serum cholesterol level in mice. J. Atheroscler. Thromb. 14, 245–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. National Toxicology Program (NTP). http://ntp.niehs.nih.gov/ntp/htdocs/liason/LowDosePeerFinalRpt.pdf (2001).

  15. Honma, S. et al. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod. Toxicol. 16, 117–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Alonso-Magdalena, P. et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 118, 1243–1250 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Roy, J. R., Chakraborty, S. & Chakraborty, T. R. Estrogen-like endocrine disrupting chemicals affecting puberty in humans-a review. Med. Sci. Monit. 15, RA137–145 (2009).

    CAS  PubMed  Google Scholar 

  18. Lee, C. H., Olson, P. & Evans, R. M. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144, 2201–2207 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Auwerx, J. PPARgamma, the ultimate thrifty gene. Diabetologia 42, 1033–1049 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Janesick, A. & Blumberg, B. Minireview: PPARgamma as the target of obesogens. J. Steroid Biochem. Mol. Biol. 127, 4–8 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kawano, K. et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41, 1422–1428 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Moran, T. H. & Bi, S. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos Trans. R. Soc. Lond. B Biol. Sci. 361, 1211–1218 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nakaya, Y. et al. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am. J. Clin. Nutr. 71, 54–58 (2000).

    CAS  PubMed  Google Scholar 

  24. Choi, K. C. et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem. Biophys. Res. Commun. 336, 747–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Nagai, N., Murao, T., Okamoto, N. & Ito, Y. Disulfiram reduces elevated blood glucose levels in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes. J. Oleo Sci. 58, 485–490 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G. & vom Saal, F. S. Exposure to bisphenol A advances puberty. Nature 401, 763–764 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Masuno, H. et al. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J. Lipid Res. 43, 676–684 (2002).

    CAS  PubMed  Google Scholar 

  28. Nagel, S. C. et al. Relative binding affinity-serum modi-fied access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ. Health Perspect. 105, 70–76 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kabuto, H., Amakawa, M. & Shishibori, T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci. 74, 2931–2940 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E. & Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ. Health Perspect. 114, 106–112 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wei, J. et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 152, 3049–3061 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Ding, S. et al. High-fat diet aggravates glucose homeostasis disorder caused by chronic exposure to bisphenol A. J. Endocrinol. 221, 167–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Dodge, J. A. et al. Environmental estrogens: effects on cholesterol lowering and bone in the ovariectomized rat. J. Steroid Biochem. Mol. Biol. 59, 155–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Seidlova-Wuttke, D., Jarry, H., Christoffel, J., Rimoldi, G. & Wuttke, W. Effects of bisphenol-A(BPA), dibutylphtalate (DBP), benzophenone-2 (BP2), procymidone (Proc), and linurone (Lin) on fat tissue, a variety of hormones and metabolic parameters: a 3 months comparison with effects of estradiol (E2) in ovariectomized (ovx) rats. Toxicology 213, 13–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ben-Jonathan, N., Hugo, E. R. & Brandebourg, T. D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol. 304, 49–54 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rosen, P. et al. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCOMCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17, 189–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bindhumol, V., Chitra, K. C. & Mathur, P. P. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 188, 117–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Grun, F. et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 20, 2141–2155 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Chamorro-Garcia, R. et al. Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferatoractivated receptor gamma-independent mechanism. Environ. Health Perspect. 120, 984–989 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kim, S. Y. The effects of low-dose exposure of di(2-ethylhexyl)phthalate, bisphenol A, bisphenol A diglycidyl ether on glucose metabolism and thyroid hormone in sprague-dawley rats and Otsuka Long-Everns Tokushima Fatty rats, Master’s degree thesis, Chung-Ang University (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-pyo Hong.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Yj., Kim, Sy., Hong, Yp. et al. Environmentally relevant levels of Bisphenol A may accelerate the development of type II diabetes mellitus in adolescent Otsuka Long Evans Tokushima Fatty rats. Toxicol. Environ. Health Sci. 6, 41–47 (2014). https://doi.org/10.1007/s13530-014-0186-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-014-0186-9

Keywords

Navigation