Skip to main content
Log in

Computational Tracking of Shear-Mediated Platelet Interactions with von Willebrand Factor

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The imaging of shear-mediated dynamic platelet behavior interacting with surface-immobilized von Willebrand factor (vWF) has tremendous potential in characterizing changes in platelet function for clinical diagnostics purposes. However, the imaging output, a series of images representing platelets adhering and rolling on the surface, poses unique, non-trivial challenges for software algorithms that reconstruct the positional trajectories of platelets. We report on an algorithm that tracks platelets using the output of such flow run experiments, taking into account common artifacts encountered by previously-published methods, and we derive seven key metrics of platelet dynamics that can be used to characterize platelet function. Extensive testing of our method using simulated platelet flow run data was carried out to validate our tracking method and derived metrics in capturing key platelet-vWF interaction-dynamics properties. Our results show that while the number of platelets present on the imaged area is the leading cause of errors, flow run data from two experiments using whole blood samples showed that our method and metrics can detect platelet property changes/differences that are concordant with the expected biological outcome, such as inhibiting key platelet receptors such as P2Y1, glycoprotein (GP)Ib and GPIIb/IIIa. These findings support the use of our methodologies to characterize platelet function among a wide range of healthy and disease cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Andrews, R. K., J. López, and M. C. Berndt. Molecular mechanisms of platelet adhesion and activation. Int. J. Biochem. Cell Biol. 29:91–105, 1997.

    Article  Google Scholar 

  2. Andrews, R. K., Y. Shen, E. E. Gardiner, J. F. Dong, J. A. López, and M. C. Berndt. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb. Haemost. 82:357–364, 1999.

    Google Scholar 

  3. Bryckaert, M., J.-P. Rosa, C. V. Denis, and P. J. Lenting. Of von Willebrand factor and platelets. Cell. Mol. Life Sci. 72:307–326, 2015.

    Article  Google Scholar 

  4. Chenouard, N., et al. Objective comparison of particle tracking methods. Nat. Methods 11:281–289, 2014.

    Article  Google Scholar 

  5. dos Meyer Santos, S., U. Klinkhardt, R. Schneppenheim, and S. Harder. Using ImageJ for the quantitative analysis of flow-based adhesion assays in real-time under physiologic flow conditions. Platelets 21:60–66, 2010.

    Article  Google Scholar 

  6. Gelles, J., B. J. Schnapp, and M. P. Sheetz. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453, 1988.

    Article  Google Scholar 

  7. Ghosh, R. N., and W. W. Webb. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66:1301–1318, 1994.

    Article  Google Scholar 

  8. Ikeda, Y., M. Handa, K. Kawano, T. Kamata, M. Murata, Y. Araki, H. Anbo, Y. Kawai, K. Watanabe, and I. Itagaki. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J. Clin. Invest. 87:1234–1240, 1991.

    Article  Google Scholar 

  9. Jackson, S. P. The growing complexity of platelet aggregation. Blood 109:5087–5095, 2007.

    Article  Google Scholar 

  10. Kent, N. J., L. Basabe-Desmonts, G. Meade, B. D. MacCraith, B. G. Corcoran, D. Kenny, and A. J. Ricco. Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomed. Microdevices 12:987–1000, 2010.

    Article  Google Scholar 

  11. Kroll, M. H., J. D. Hellums, L. V. McIntire, I. A. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88:1525–1541, 1996.

    Google Scholar 

  12. Kulkarni, S., S. M. Dopheide, C. L. Yap, C. Ravanat, M. Freund, P. Mangin, K. A. Heel, A. Street, I. S. Harper, F. Lanza, and S. P. Jackson. A revised model of platelet aggregation. J. Clin. Invest. 105:783–791, 2000.

    Article  Google Scholar 

  13. Lincoln, B., A. J. Ricco, N. J. Kent, L. Basabe-Desmonts, L. P. Lee, B. D. MacCraith, D. Kenny, and G. Meade. Integrated system investigating shear-mediated platelet interactions with von Willebrand factor using microliters of whole blood. Anal. Biochem. 405:174–183, 2010.

    Article  Google Scholar 

  14. Lopez-Alonso, A., B. Jose, M. Somers, K. Egan, D. P. Foley, A. J. Ricco, S. Ramström, L. Basabe-Desmonts, and D. Kenny. Individual platelet adhesion assay: measuring platelet function and antiplatelet therapies in whole blood via digital quantification of cell adhesion. Anal. Chem. 85:6497–6504, 2013.

    Article  Google Scholar 

  15. Mazzucato, M., M. R. Cozzi, P. Pradella, Z. M. Ruggeri, and L. De Marco. Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under high flow. Blood 104:3221–3227, 2004.

    Article  Google Scholar 

  16. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9:62–66, 1979.

    Article  Google Scholar 

  17. Perl, A., D. N. Reinhoudt, and J. Huskens. Microcontact printing: limitations and achievements. Adv. Mater. 21:2257–2268, 2009.

    Article  Google Scholar 

  18. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. R Found. Stat. Comput. Vienna, Austria., 2012.

  19. Radmacher, M., M. Fritz, C. M. Kacher, J. P. Cleveland, and P. K. Hansma. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70:556–567, 1996.

    Article  Google Scholar 

  20. Ruggeri, Z. M. Platelets in atherothrombosis. Nat. Med. 8:1227–1234, 2002.

    Article  Google Scholar 

  21. Ruhnau, P., C. Guetter, T. Putze, and C. Schnörr. A variational approach for particle tracking velocimetry. Meas. Sci. Technol. 16:1449–1458, 2005.

    Article  Google Scholar 

  22. Savage, B., F. Almus-Jacobs, and Z. M. Ruggeri. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94:657–666, 1998.

    Article  Google Scholar 

  23. Savage, B., E. Saldívar, and Z. M. Ruggeri. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297, 1996.

    Article  Google Scholar 

  24. Saxton, M. J., and K. Jacobson. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26:373–399, 1997.

    Article  Google Scholar 

  25. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer, 2009.

    Book  MATH  Google Scholar 

  26. Work, S. S., and D. M. Warshaw. Computer-assisted tracking of actin filament motility. Anal. Biochem. 202:275–285, 1992.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by Science Foundation Ireland under Grant No.10/CE/B1821.

Conflict of Interest

A Ralph, M. Somers, J. Cowman, B. Voisin, E. Hogan, H. Dunne, E. Dunne, B. Byrne, N. Kent, A. Ricco, D. Kenny, and S. Wong declare that they have no conflict of interest.

Statement of Human Studies

This study was approved by the Medical Research Ethics Committee of the Royal College of Surgeons in Ireland and complied with the Declaration of Helsinki.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Wong.

Additional information

Associate Editors Baruch Barry Lieber and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralph, A., Somers, M., Cowman, J. et al. Computational Tracking of Shear-Mediated Platelet Interactions with von Willebrand Factor. Cardiovasc Eng Tech 7, 389–405 (2016). https://doi.org/10.1007/s13239-016-0282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0282-x

Keywords

Navigation