Skip to main content

Advertisement

Log in

Zeta potential as a measure of the surface charge of mycobacterial cells

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The surface charge of bacteria is closely related to their envelope structure and interactions with surfaces in natural environments. The aim of this study was to estimate the effect of experimental conditions on the zeta (ζ) potential of mycobacterial cells as a measure of their cell-surface charge. We observed that Mycobacterium smegmatis mc2155 cells at physiological conditions displayed a high and stable ζ potential (−42.9 ± 5.9 mV) which increased from the late-exponential phase of growth and at pH levels of >8.0. The optimal conditions for estimating the surface charge of mycobacteria using the ζ potential occurred when cells were harvested during the exponential growth phase (OD595 0.3–0.5) and then dispersed in solutions with pH levels of 7.0–10.0. These optimal conditions of ζ potential measurements were useful for differentiating between the virulent M. tuberculosis H37Rv strain and various non-virulent mycobacterial strains at pH 9.8. This study is the first to use zetametry to estimate the cell-surface charge of M. tuberculosis cells. We expect that the experimental conditions presented in this work will have further applications to estimate the cell-surface charge of other wild-type or genetically modified mycobacterial species and thereby further our understanding of the physicochemical interactions of mycobacteria with external surfaces in natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agranoff D, Krishna S (2004) Metal ion transport and regulation in Mycobacterium tuberculosis. Front Biosci 9:2996–3006

    Article  CAS  PubMed  Google Scholar 

  • Altaf M, Miller CH, Bellows DS, O’Toole R (2010) Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis (Edinb) 90(6):333–337. doi:10.1016/j.tube.2010.09.002

    Article  CAS  Google Scholar 

  • Amaral L, Martins M, Viveiros M (2007) Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J Antimicrob Chemother 59(6):1237–1246. doi:10.1093/jac/dkl500

    Article  CAS  PubMed  Google Scholar 

  • Bar-Even A, Noor E, Flamholz A, Buescher JM, Milo R (2011) Hydrophobicity and charge shape cellular metabolite concentrations. PLoS Comput Biol 7(10):e1002166. doi:10.1371/journal.pcbi.1002166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bayer ME, Sloyer JL Jr (1990) The electrophoretic mobility of gram-negative and gram-positive bacteria: an electrokinetic analysis. J Gen Microbiol 136(5):867–874

    Article  CAS  PubMed  Google Scholar 

  • Birch HL, Alderwick LJ, Appelmelk BJ, Maaskant J, Bhatt A, Singh A, Nigou J, Eggeling L, Geurtsen J, Besra GS (2010) A truncated lipoglycan from mycobacteria with altered immunological properties. Proc Natl Acad Sci USA 107(6):2634–2639. doi:10.1073/pnas.0915082107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardona PJ, Soto CY, Martin C, Giquel B, Agusti G, Andreu N, Guirado E, Sirakova T, Kolattukudy P, Julian E, Luquin M (2006) Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes Infect 8(1):183–190. doi:10.1016/j.micinf.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  • Chapman JS, Bernard JS (1962) The tolerances of unclassified mycobacteria. I. Limits of pH tolerance. Am Rev Respir Dis 86:582–583

    CAS  PubMed  Google Scholar 

  • Ciesla J, Bieganowski A, Janczarek M, Urbanik-Sypniewska T (2011) Determination of the electrokinetic potential of Rhizobium leguminosarum bv trifolii Rt24.2 using Laser Doppler Velocimetry—a methodological study. J Microbiol Methods 85(3):199–205. doi:10.1016/j.mimet.2011.03.004

    Article  PubMed  Google Scholar 

  • Daffe M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    Article  CAS  PubMed  Google Scholar 

  • Daffe M, Etienne G (1999) The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber Lung Dis 79(3):153–169. doi:10.1054/tuld.1998.0200

    Article  CAS  PubMed  Google Scholar 

  • Dubos RJ, Middlebrook G (1948) Cytochemical reaction of virulent tubercle bacilli. Am Rev Tuberc 58(6):698

    CAS  PubMed  Google Scholar 

  • Eboigbodin KE, Newton JR, Routh AF, Biggs CA (2006) Bacterial quorum sensing and cell surface electrokinetic properties. Appl Microbiol Biotechnol 73(3):669–675. doi:10.1007/s00253-006-0505-4

    Article  CAS  PubMed  Google Scholar 

  • Forrellad MA, Klepp LI, Gioffre A, Sabio y Garcia J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4(1):3–66. doi:10.4161/viru.22329

    Article  PubMed Central  PubMed  Google Scholar 

  • Goulter RM, Gentle IR, Dykes GA (2009) Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example. Lett Appl Microbiol 49(1):1–7. doi:10.1111/j.1472-765X.2009.02591.x

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Seiki H, Tsuneda S, Hirata A, Sasaki H (2003) Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory. J Colloid Interface Sci 264(2):565–568. doi:10.1016/S0021-9797(03)00418-1

    Article  CAS  PubMed  Google Scholar 

  • Hiemenz P, Rajagopalan R (1997) Principles of colloid and surface chemistry. Third edition, revised and expanded. Marcel Dekker, New York

    Google Scholar 

  • Holder DJ, Kirkland BH, Lewis MW, Keyhani NO (2007) Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153(Pt 10):3448–3457. doi:10.1099/mic.0.2007/008524-0

    Article  CAS  PubMed  Google Scholar 

  • Kristensen S, Tian Y, Klegerman ME, Groves MJ (1992) Origins of BCG surface charge: effect of ionic strength and chemical modifications on zeta potential of Mycobacterium bovis BCG, Tice substrain, cells. Microbios 70(284–285):185–198

    CAS  PubMed  Google Scholar 

  • Livanainen E (1995) Isolation of mycobacteria from acidic forest soil samples: comparison of culture methods. J Appl Bacteriol 78(6):663–668

    Article  CAS  PubMed  Google Scholar 

  • Middlebrook G, Coleman CM, Schaefer WB (1959) Sulfolipid from virulent tubercle bacilli. Proc Natl Acad Sci USA 45(12):1801–1804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mozes N, Leonard AJ, Rouxhet PG (1988) On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity. Biochim Biophys Acta 945(2):324–334

    Article  CAS  PubMed  Google Scholar 

  • Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008) The proton motive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 105(33):11945–11950. doi:10.1073/pnas.0711697105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenhahn A, Finlay JA, Pettit ME, Ward A, Wirges W, Gerhard R, Callow ME, Grunze M, Callow JA (2009) Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength. Biointerphases 4(1):7–11. doi:10.1116/1.3110182

    Article  PubMed  Google Scholar 

  • Seale RB, Bremer PJ, Flint SH, McQuillan AJ (2010) Characterization of spore surfaces from a Geobacillus sp. isolate by pH dependence of surface charge and infrared spectra. J Appl Microbiol 109(4):1339–1348. doi:10.1111/j.1365-2672.2010.04760.x

    Article  CAS  PubMed  Google Scholar 

  • Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4(11):1911–1919

    Article  CAS  PubMed  Google Scholar 

  • Soni KA, Balasubramanian AK, Beskok A, Pillai SD (2008) Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Curr Microbiol 56(1):93–97. doi:10.1007/s00284-007-9046-z

    Article  CAS  PubMed  Google Scholar 

  • Soto CY, Andreu N, Gibert I, Luquin M (2002) Simple and rapid differentiation of Mycobacterium tuberculosis H37Ra from M. tuberculosis clinical isolates through two cytochemical tests using neutral red and nile blue stains. J Clin Microbiol 40(8):3021–3024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263(5147):678–681

    Article  CAS  PubMed  Google Scholar 

  • van der Mei HC, Busscher HJ (2001) Electrophoretic mobility distributions of single-strain microbial populations. Appl Environ Microbiol 67(2):491–494

    Article  PubMed Central  PubMed  Google Scholar 

  • van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987) Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53(8):1898–1901

    PubMed Central  PubMed  Google Scholar 

  • Yeung T, Grinstein S (2007) Lipid signaling and the modulation of surface charge during phagocytosis. Immunol Rev 219:17–36. doi:10.1111/j.1600-065X.2007.00546.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Groves MJ, Klegerman ME (1988) The surface charge of cells of Mycobacterium bovis BCG vaccine, Tice substrain. Microbios 53(216–217):191–195

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the División de Investigación Bogotá (DIB)–Universidad Nacional de Colombia, grants 14337, 15084 and 16060. The authors thank the Laboratory of Chemical Engineering at the Universidad Nacional de Colombia for its valuable help in the zetametry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos-Y. Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala-Torres, C., Hernández, N., Galeano, A. et al. Zeta potential as a measure of the surface charge of mycobacterial cells. Ann Microbiol 64, 1189–1195 (2014). https://doi.org/10.1007/s13213-013-0758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0758-y

Keywords

Navigation