Skip to main content
Log in

Comparative transcriptomic analysis of the multi-targeted effects of the herbal extracts against Escherichia coli O157:H7

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Antibiotics can be classified based upon drug-target interaction and lethality. Bactericidal drugs, which target cell wall/membrane synthesis, DNA replication and repair or protein synthesis, induce hydroxyl radical leading to the bacterial cell death with extreme efficacy. The antibiotic mechanism of the bactericidal drugs is followed by stimulating oxidation of nicotinamide adenine dinucleotide hydrate (NADH) via the electron transport chain that is dependent upon the tricarboxylic acid (TCA) cycle. The five herbal samples, Houttuynia cordata Thunb (HCT), Chrysanthemum lavandulifolum (CL), Patrinia scabiosaefolia (PS), Angelica dahurica Bentham et Hooker (ADBH) and Agrimonia pilosa (AP) were extracted to acquire the fractions, and then inoculated to investigate their antibiotic effect against the bacteria Escherichia coli O157:H7 through the disk diffusion method. Total RNA of the treated cells was isolated to compare and analyze their gene expression profiling. Results from this study indicate that the molecular mechanisms of simultaneous multi-target antibiotic efficacy of the five herbal samples include bacterial cell wall/membrane synthesis, DNA replication and repair, and protein synthesis. The antibiotic mechanisms were associated with the hydroxyl radical damage followed by overproduction of superoxide. Moreover, inhibition of multidrug resistance system and etiological factors are encouraging development of novel antibiotics. Our study suggests that the five herbal samples have a molecular mechanism similar to that of bactericidal drugs that is induction of hydroxyl radical damage which leads to bacterial cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol. 1, 65–70 (2003).

    Article  CAS  Google Scholar 

  2. Pankey, G.A. & Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38, 864–870 (2004).

    Article  CAS  Google Scholar 

  3. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000).

    Article  CAS  Google Scholar 

  4. Poehlsgaard, J. & Douthwaite, S. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3, 870–881 (2005).

    Article  CAS  Google Scholar 

  5. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  Google Scholar 

  6. Dehority, W. Use of vancomycin in pediatrics. Pediatr. Infect. Dis. J. 29, 462–464 (2010).

    Article  Google Scholar 

  7. May, T., Ito, A. & Okabe, S. Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob. Agents Chemother. 53, 4628–4639 (2009).

    Article  CAS  Google Scholar 

  8. Harrison, J.W. & Svec, T.A. The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse. Quintessence Int. 29, 223–229 (1998).

    CAS  Google Scholar 

  9. Dimitrakov, J., Tchitalov, T., Zlatanov, D. & Dikov, D. A prospective, randomized, double-blind placebocontrolled study of antibiotics for the treatment of category liib Chronic Pelvic Pain syndrome in Men. Third International Chronic Prostatitis Network (2009).

  10. Kelesidis, T. & Canseco, E. Levofloxacin-induced hypoglycemia: a rare but life-threatening side effect of a widely used antibiotic. Am. J. Med. 122, e3–4 (2009).

    Article  Google Scholar 

  11. Shahien, R, Vieksler, V. & Bowirrat, A. Amoxicillininduced aseptic meningoencephalitis. Int. J. Gen. Med. 3, 157–162 (2010).

    CAS  Google Scholar 

  12. Kim, K.-S. et al. Global transcriptome analysis of the Escherichia coli O157 response to Houttuynia Cordata Thunb. BioChip J. 4, 237–246 (2010).

    Article  CAS  Google Scholar 

  13. Yang, H.J. et al. Global transcriptome analysis of the E. coli O157 response to Agrimonia pilosa extract. Mol. Cell. Toxicol. 7, 299–310 (2011).

    Article  CAS  Google Scholar 

  14. Choi, E.-K. et al. Genome-wide gene expression analysis of Patrinia scabiosaefolia reveals an anibiotic effect. BioChip J. 5, 246–254 (2011).

    Article  CAS  Google Scholar 

  15. Holtz, L.R., Neill, M.A. & Tarr, P.I. Acute bloody diarrhea: a medical emergency for patients of all ages. Gastroenterology 136, 1887–1898 (2009).

    Article  Google Scholar 

  16. Jenke, C. et al. Phylogenetic analysis of enterohemorrhagic Escherichia coli O157, Germany, 1987–2008. Emerg. Infect. Dis. 16, 610–616 (2010).

    Article  CAS  Google Scholar 

  17. Tarr, P.I., Gordon, C.A. & Chandler, W.L. Shiga-toxinproducing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086 (2005).

    CAS  Google Scholar 

  18. Jang, H.J., Nde, C., Toghrol, F. & Bentley, W.E. Global transcriptome analysis of the Mycobacterium bovis BCG response to sodium hypochlorite. Appl. Microbiol. Biotechnol. 85, 127–140 (2009).

    Article  CAS  Google Scholar 

  19. Lupoli, T.J. et al. Studying a cell division amidase using defined peptidoglycan substrates. J. Am. Chem. Soc. 131, 18230–18231 (2009).

    Article  CAS  Google Scholar 

  20. Priyadarshini, R., de Pedro, M.A. & Young, K.D. Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J. Bacteriol. 189, 5334–5347 (2007).

    Article  CAS  Google Scholar 

  21. Korsak, D., Liebscher, S. & Vollmer, W. Susceptibility to antibiotics and beta-lactamase induction in murein hydrolase mutants of Escherichia coli. Antimicrob. Agents Chemother. 49, 1404–1409 (2005).

    Article  CAS  Google Scholar 

  22. Besong, G.E. et al. A de novo designed inhibitor of D-Ala-D-Ala ligase from E. coli. Angew. Chem. Int. Ed. Engl. 44, 6403–6406 (2005).

    Article  CAS  Google Scholar 

  23. Scholte, A.A., Eubanks, L.M., Poulter, C.D. & Vederas, J.C. Synthesis and biological activity of isopentenyl diphosphate analogues. Bioorg. Med. Chem. 12, 763–770 (2004).

    Article  CAS  Google Scholar 

  24. Stenberg, F. et al. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280, 34409–34419 (2005).

    Article  CAS  Google Scholar 

  25. Rida, S., Caillet, J. & Alix, J.H. Amplification of a novel gene, sanA, abolishes a vancomycin-sensitive defect in Escherichia coli. J. Bacteriol. 178, 94–102 (1996).

    CAS  Google Scholar 

  26. Pytel, D., Slupianek, A., Ksiazek, D., Skorski, T. & Blasiak, J. Uracil-DNA glycosylases. Postepy Biochem. 54, 362–370 (2008).

    CAS  Google Scholar 

  27. Su’etsugu, M., Emoto, A., Fujimitsu, K., Keyamura, K. & Katayama, T. Transcriptional control for initiation of chromosomal replication in Escherichia coli: fluctuation of the level of origin transcription ensures timely initiation. Genes Cells 8, 731–745 (2003).

    Article  Google Scholar 

  28. Frank, G.A. et al. Out-of-equilibrium conformational cycling of GroEL under saturating ATP concentrations. Proc. Natl. Acad. Sci. U.S.A. 107, 6270–6274 (2010).

    Article  CAS  Google Scholar 

  29. Machida, K. et al. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins. Biochim. Biophys. Acta 1794, 1344–1354 (2009).

    Article  CAS  Google Scholar 

  30. Ratajczak, E., Zietkiewicz, S. & Liberek, K. Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J. Mol. Biol. 386, 178–189 (2009).

    Article  CAS  Google Scholar 

  31. Sugimoto, S., Saruwatari, K., Higashi, C. & Sonomoto, K. The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division. Microbiology 154, 1876–1885 (2008).

    Article  CAS  Google Scholar 

  32. Kim, M., Lim, S. & Ryu, S. Comparison of tdcA expression between Escherichia coli and Salmonella enterica serovar Typhimurium. J. Microbiol. Biotechnol. 21, 252–255 (2011).

    CAS  Google Scholar 

  33. Sandvig, K., Bergan, J., Dyve, A.B., Skotland, T. & Torgersen, M.L. Endocytosis and retrograde transport of Shiga toxin. Toxicon 56, 1181–1185 (2010).

    Article  CAS  Google Scholar 

  34. Garcia-Contreras, R., Zhang, X.S., Kim, Y. & Wood, T.K. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS One 3, e2394 (2008).

    Article  Google Scholar 

  35. Nieto, J.M. et al. The hha gene modulates haemolysin expression in Escherichia coli. Mol. Microbiol. 5, 1285–1293 (1991).

    CAS  Google Scholar 

  36. Simic, M., De Jonge, N., Loris, R., Vesnaver, G. & Lah, J. Driving forces of gyrase recognition by the addiction toxin CcdB. J. Biol. Chem. 284, 20002–20010 (2009).

    Article  CAS  Google Scholar 

  37. Feldgarden, M. & Riley, M.A. The phenotypic and fitness effects of colicin resistance in Escherichia coli K-12. Evolution 53, 1019–1027 (1999).

    Article  CAS  Google Scholar 

  38. Morita, Y., Sobel, M.L. & Poole, K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J. Bacteriol. 188, 1847–1855 (2006).

    Article  CAS  Google Scholar 

  39. Yerushalmi, H., Lebendiker, M. & Schuldiner, S. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J. Biol. Chem. 270, 6856–6863 (1995).

    Article  CAS  Google Scholar 

  40. Itou, J., Eguchi, Y. & Utsumi, R. Molecular mechanism of transcriptional cascade initiated by the EvgS/EvgA system in Escherichia coli K-12. Biosci. Biotechnol. Biochem. 73, 870–878 (2009).

    Article  CAS  Google Scholar 

  41. Higashi, K. et al. Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J. Bacteriol. 190, 872–878 (2008).

    Article  CAS  Google Scholar 

  42. Fukuchi, J., Kashiwagi, K., Yamagishi, M., Ishihama, A. & Igarashi, K. Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltrans-ferase-deficient mutant of Escherichia coli. J. Biol. Chem. 270, 18831–18835 (1995).

    Article  CAS  Google Scholar 

  43. Igarashi, K. & Kashiwagi, K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem. 48, 506–512 (2010).

    Article  CAS  Google Scholar 

  44. Rengarajan, J. et al. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol. Microbiol. 53, 275–282 (2004).

    Article  CAS  Google Scholar 

  45. Nde, C.W., Jang, H.J., Toghrol, F. & Bentley, W.E. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol. BMC Genomics 9, 473 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeung-Jin Jang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Lee, JY., Kwon, SY. et al. Comparative transcriptomic analysis of the multi-targeted effects of the herbal extracts against Escherichia coli O157:H7. BioChip J 6, 379–390 (2012). https://doi.org/10.1007/s13206-012-6410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6410-2

Keywords

Navigation