Skip to main content

Advertisement

Log in

Identification of curcumin derivatives as human LMTK3 inhibitors for breast cancer: a docking, dynamics, and MM/PBSA approach

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Human lemur tyrosine kinase-3 (LMTK3) is primarily involved in regulation of estrogen receptor–α (ERα) by phosphorylation activity. LMTK3 acts as key biomarker for ERα positive breast cancer and identified as novel drug target for breast cancer. Due to the absence of experimental reports, the computational approach has been followed to screen LMTK3 inhibitors from natural product curcumin derivatives based on rational inhibitor design. The initial virtual screening and re-docking resulted in identification of top three leads with favorable binding energy and strong interactions in critical residues of ATP-binding cavity. ADME prediction confirmed the pharmacological activity of the leads with various properties. The stability and binding affinity of leads were well refined in dynamic system from 25 ns MD simulations. The behavior of protein motion towards closure of ATP-binding cavity was evaluated based on eigenvectors by PCA. In addition, MM/PBSA calculations also confirmed the relative binding free energy of LMTK3–lead complexes in favor of the effective binding. From our study, novel LMTK3 inhibitors tetrahydrocurcumin, curcumin 4,4′-diacetate, and demethoxycurcumin have been proposed with inhibition mechanism. Further experimental evaluation on reported lead candidates might prove its role in breast cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    Article  PubMed  Google Scholar 

  • Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  CAS  PubMed  Google Scholar 

  • Anbarasu K, Jayanthi S (2014) Structural modeling and molecular dynamics studies on the human LMTK3 domain and the mechanism of ATP binding. Mol BioSyst 10:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Creighton DJ, Zheng ZB, Holewinski R, Hamilton DS, Eiseman JL (2003) Glyoxalase I inhibitors in cancer chemotherapy. Biochem Soc Trans 31:1378–1382

    Article  CAS  PubMed  Google Scholar 

  • Giamas G, Stebbing J, Vorgias CE, Knippschild U (2007) Protein kinases as targets for cancer treatment. Pharmacogenomics 8:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Giamas G, Filipovic A, Jacob J, Messier W, Zhang H (2011) Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer. Nat Med 17(6):715–719

    Article  CAS  PubMed  Google Scholar 

  • Guan SS, Han WW, Zhang H, Wang S, Shan YM (2016) Insight into the interactive residues between two domains of human somatic Angiotensin-converting enzyme and Angiotensin II by MM-PBSA calculation and steered molecular dynamics simulation. J Biomol Struct Dyn 34(1):15–28

    Article  CAS  PubMed  Google Scholar 

  • Hess HB, Bekker H, Berendsen HJC, Fraaije JGEM (1996) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  • Johnson AB, O’Malley BW (2011) ERasing breast cancer resistance through the kinome. Nat Med 17(6):660–661

    Article  CAS  PubMed  Google Scholar 

  • Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:141–153

    PubMed  Google Scholar 

  • Kumari R, Kumar R, Lynn A, Open Source Drug Discovery Consortium (2014) g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962

    Article  CAS  PubMed  Google Scholar 

  • Labrie F, Labrie C, Belanger A, Simard J, Gauthier S, Luu-The V, Merand Y et al (1999) EM-652 (SCH 57068), a third generation SERM acting as pure antiestrogen in the mammary gland and endometrium. J Steroid Biochem Mol Biol 69:51–84

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  PubMed  Google Scholar 

  • Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595:227–243

    Article  PubMed  Google Scholar 

  • Lindahl E, Hess B, van Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317

    Article  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Toward minimalistic modeling of oral drug absorption. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  CAS  PubMed  Google Scholar 

  • Schuttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(8):1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24(5):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small-Molecule Drug Discovery Suite 2015-3: QikProp, version 4.5, Schrödinger, LLC, New York, NY

  • Stebbing J, Filipovic A, Giamas G (2011) Lemur tyrosine kinase-3 (LMTK3) in cancer and evolution. Oncotarget 2:428–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Stebbing J, Filipovic A, Ellis IO, Green AR, D’Silva TR, Lenz HJ, Coombes RC, Wang T, Lee SC, Giamas G (2012) LMTK3 expression in breast cancer: association with tumor phenotype and clinical outcome. Breast Cancer Res Treat 132(2):537–544

    Article  CAS  PubMed  Google Scholar 

  • Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D et al (2005) Virtual computational chemistry laboratory–design and description. J Comput Aided Mol Des 19:453–463

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner PJ (2005) XMGRACE, Version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton

    Google Scholar 

  • Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Vellore Insititute of Technology (VIT) for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayanthi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbarasu, K., Jayanthi, S. Identification of curcumin derivatives as human LMTK3 inhibitors for breast cancer: a docking, dynamics, and MM/PBSA approach. 3 Biotech 8, 228 (2018). https://doi.org/10.1007/s13205-018-1239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1239-6

Keywords

Navigation