Skip to main content
Log in

Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoylglycerol

ABHD4:

α/β-Hydrolase 4

Abhd4 :

α/β-Hydrolase 4 gene

ABHD6:

α/β-Hydrolase 6

Abhd6 :

α/β-Hydrolase 6 gene

ABHD12:

α/β-Hydrolase 12

Abhd12 :

α/β-Hydrolase 12 gene

AEA:

Anandamide

CB1:

Cannabinoid receptor 1

CB2:

Cannabinoid receptor 2

Cnr1 :

Cannabinoid receptor 1 gene

Cnr2 :

Cannabinoid receptor 2 gene

Ctl:

Control group

Ctl + training:

Exercise training + standard diet group

DAGL-α:

Diacylglycerol lipase α

Dagl-α :

Diacylglycerol lipase α gene

DAGL-β:

Diacylglycerol lipase β

Dagl-β :

Diacylglycerol lipase β gene

DIO:

Diet-induced obesity

eCBs:

Endocannabinoids

ECS:

Endocannabinoid system

EDL:

Extensor digitorum longus

EDTA:

Ethylenediaminetetraacetic acid

FAAH:

Fatty acid amide hydrolase

Faah :

Fatty acid amide hydrolase gene

GDE-1:

Glycerophosphodiesterase 1

Gde-1 :

Glycerophosphodiesterase 1 gene

HFD:

High-fat diet group

HFD + training:

Exercise training + high-fat diet group

MAGL:

Monoacylglycerol lipase

Magl :

Monoacylglycerol lipase gene

MAV:

Maximal aerobic velocity

NAPE-PLD:

N-acyl phosphatidylethanolamine phospholipase D

Nape-pld :

N-acyl phosphatidylethanolamine phospholipase D gene

OEA:

N-oleylethanolamine

OGTT:

Oral glucose tolerance test

PEA:

N-palmitoyl-ethanolamine

PPAR:

Peroxisome proliferator-activated receptor

PTPN-22:

Protein tyrosine phosphatase N22

Ptpn-22 :

Protein tyrosine phosphatase N22 gene

PUFA:

Polyunsaturated fatty acids

SAT:

Subcutaneous adipose tissue

RNA:

Ribonucleic acid

mRNA:

Messenger RNA

TRPV1:

Transient receptor potential cation channel subfamily V member 1

Trpv1 :

Transient receptor potential cation channel subfamily V member 1 gene

VAT:

Visceral adipose tissue

References

  1. Alvheim AR, Malde MK, Osei-Hyiaman D, Lin YH, Pawlosky RJ, Madsen L, Kristiansen K, Froyland L, Hibbeln JR (2012) Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 20:1984–1994

    Article  CAS  Google Scholar 

  2. Artmann A, Petersen G, Hellgren LI, Boberg J, Skonberg C, Nellemann C, Hansen SH, Hansen HS (2008) Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim Biophys Acta 1781:200–212

    Article  CAS  PubMed  Google Scholar 

  3. Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK, Kondepudi KK, Bishnoi M (2014) Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS One 9:e103093

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85:3338–3342

    CAS  PubMed  Google Scholar 

  5. Bennetzen MF (2011) Investigations of the endocannabinoid system in adipose tissue: effects of obesity/weight loss and treatment options. Dan Med Bull 58:B4269

    PubMed  Google Scholar 

  6. Cavuoto P, McAinch AJ, Hatzinikolas G, Cameron-Smith D, Wittert GA (2007) Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol Cell Endocrinol 267:63–69

    Article  CAS  PubMed  Google Scholar 

  7. Cortez MY, Torgan CE, Brozinick JT Jr, Ivy JL (1991) Insulin resistance of obese Zucker rats exercise trained at two different intensities. Am J Physiol 261:E613–619

    CAS  PubMed  Google Scholar 

  8. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S et al (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crespillo A, Suarez J, Bermudez-Silva FJ, Rivera P, Vida M, Alonso M, Palomino A, Lucena MA, Serrano A, Perez-Martin M et al (2010) Expression of the cannabinoid system in muscle: effects of a high-fat diet and CB1 receptor blockade. Biochem J 433:175–185

    Article  Google Scholar 

  10. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deveaux V, Cadoudal T, Ichigotani Y, Teixeira-Clerc F, Louvet A, Manin S, Nhieu JT, Belot MP, Zimmer A, Even P et al (2009) Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One 4:e5844

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Marzo V (2008) Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 160:1–24

    PubMed  Google Scholar 

  13. Di Marzo V, Cote M, Matias I, Lemieux I, Arsenault BJ, Cartier A, Piscitelli F, Petrosino S, Almeras N, Despres JP (2009) Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia 52:213–217

    Article  CAS  PubMed  Google Scholar 

  14. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    Article  PubMed  Google Scholar 

  15. Eckardt K, Sell H, Taube A, Koenen M, Platzbecker B, Cramer A, Horrighs A, Lehtonen M, Tennagels N, Eckel J (2009) Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia 52:664–674

    Article  CAS  PubMed  Google Scholar 

  16. Etgen GJ Jr, Jensen J, Wilson CM, Hunt DG, Cushman SW, Ivy JL (1997) Exercise training reverses insulin resistance in muscle by enhanced recruitment of GLUT-4 to the cell surface. Am J Physiol 272:E864–869

    CAS  PubMed  Google Scholar 

  17. Fellmann L, Nascimento AR, Tibirica E, Bousquet P (2013) Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther 137:331–340

    Article  CAS  PubMed  Google Scholar 

  18. Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A (2001) GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes 50:1324–1329

    Article  CAS  PubMed  Google Scholar 

  19. Heyman E, Gamelin FX, Aucouturier J, Di Marzo V (2012) The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: potential implications for the treatment of obesity. Obes Rev 13:1110–1124

    Article  CAS  PubMed  Google Scholar 

  20. Iannotti FA, Piscitelli F, Martella A, Mazzarella E, Allara M, Palmieri V, Parrella C, Capasso R, Di Marzo V (2013) Analysis of the “endocannabinoidome” in peripheral tissues of obese Zucker rats. Prostaglandins Leukot Essent Fat Acids 89:127–135

    Article  CAS  Google Scholar 

  21. Iwasaki Y, Tamura Y, Inayoshi K, Narukawa M, Kobata K, Chiba H, Muraki E, Tsunoda N, Watanabe T (2011) TRPV1 agonist monoacylglycerol increases UCP1 content in brown adipose tissue and suppresses accumulation of visceral fat in mice fed a high-fat and high-sucrose diet. Biosci Biotechnol Biochem 75:904–909

    Article  CAS  PubMed  Google Scholar 

  22. Lindborg KA, Jacob S, Henriksen EJ (2011) Effects of chronic antagonism of endocannabinoid-1 receptors on glucose tolerance and insulin action in skeletal muscles of lean and obese Zucker rats. Cardiorenal Med 1:31–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindborg KA, Teachey MK, Jacob S, Henriksen EJ (2010) Effects of in vitro antagonism of endocannabinoid-1 receptors on the glucose transport system in normal and insulin-resistant rat skeletal muscle. Diabetes Obes Metab 12:722–730

    Article  CAS  PubMed  Google Scholar 

  24. Lipina C, Stretton C, Hastings S, Hundal JS, Mackie K, Irving AJ, Hundal HS (2010) Regulation of MAP kinase-directed mitogenic and protein kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle cells. Diabetes 59:375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu YL, Connoley IP, Wilson CA, Stock MJ (2005) Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice. Int J Obes (Lond) 29:183–187

    Article  CAS  Google Scholar 

  26. Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Luquet S, Palmiter RD, Krystal G, Rai R, Mahadevan A et al (2008) Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology 54:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Massa F, Mancini G, Schmidt H, Steindel F, Mackie K, Angioni C, Oliet SH, Geisslinger G, Lutz B (2010) Alterations in the hippocampal endocannabinoid system in diet-induced obese mice. J Neurosci 30:6273–6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matias I, Gonthier MP, Orlando P, Martiadis V, De Petrocellis L, Cervino C, Petrosino S, Hoareau L, Festy F, Pasquali R et al (2006) Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 91:3171–3180

    Article  CAS  PubMed  Google Scholar 

  29. Matias I, Petrosino S, Racioppi A, Capasso R, Izzo AA, Di Marzo V (2008) Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: effect of high fat diets. Mol Cell Endocrinol 286:S66–78

    Article  CAS  PubMed  Google Scholar 

  30. Murdolo G, Kempf K, Hammarstedt A, Herder C, Smith U, Jansson PA (2007) Insulin differentially modulates the peripheral endocannabinoid system in human subcutaneous abdominal adipose tissue from lean and obese individuals. J Endocrinol Invest 30:RC17–21

    Article  CAS  PubMed  Google Scholar 

  31. Okumura N, Hashida-Okumura A, Kita K, Matsubae M, Matsubara T, Takao T, Nagai K (2005) Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics 5:2896–2906

    Article  CAS  PubMed  Google Scholar 

  32. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100

    Article  CAS  PubMed  Google Scholar 

  33. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, Group RI-NAS (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775

    Article  CAS  PubMed  Google Scholar 

  34. Polak J, Klimcakova E, Moro C, Viguerie N, Berlan M, Hejnova J, Richterova B, Kraus I, Langin D, Stich V (2006) Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor alpha in obese women. Metabolism 55:1375–1381

    Article  CAS  PubMed  Google Scholar 

  35. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  36. Purves RD (1992) Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J Pharmacokinet Biopharm 20:211–226

    Article  CAS  PubMed  Google Scholar 

  37. Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17:475–490

    Article  CAS  PubMed  Google Scholar 

  38. Silvestri C, Ligresti A, Di Marzo V (2011) Peripheral effects of endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle. Rev Endocr Metab Disord 12:153–162

    Article  CAS  PubMed  Google Scholar 

  39. Starowicz KM, Cristino L, Matias I, Capasso R, Racioppi A, Izzo AA, Di Marzo V (2008) Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with a high-fat diet. Obesity (Silver Spring) 16:553–565

    Article  CAS  Google Scholar 

  40. Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372

    Article  CAS  PubMed  Google Scholar 

  41. Tedesco L, Valerio A, Dossena M, Cardile A, Ragni M, Pagano C, Pagotto U, Carruba MO, Vettor R & Nisoli E (2010) Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways. Diabetes

  42. Touati S, Meziri F, Devaux S, Berthelot A, Touyz RM, Laurant P (2011) Exercise reverses metabolic syndrome in high-fat diet-induced obese rats. Med Sci Sports Exerc 43:398–407

    Article  CAS  PubMed  Google Scholar 

  43. Vettor R, Pagano C (2009) The role of the endocannabinoid system in lipogenesis and fatty acid metabolism. Best Pract Res Clin Endocrinol Metab 23:51–63

    Article  CAS  PubMed  Google Scholar 

  44. Watkins BA, Kim J (2014) The endocannabinoid system: directing eating behavior and macronutrient metabolism. Front Psychol 5:1506

    PubMed  PubMed Central  Google Scholar 

  45. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wiklund PK, Pekkala S & Cheng S (2013) Exercise, the endocannabinoid system and metabolic health. Journal of Sport and Health Science:60–61

  47. Yan ZC, Liu DY, Zhang LL, Shen CY, Ma QL, Cao TB, Wang LJ, Nie H, Zidek W, Tepel M et al (2007) Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta. Biochem Biophys Res Commun 354:427–433

    Article  CAS  PubMed  Google Scholar 

  48. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ et al (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100:1063–1070

    Article  CAS  PubMed  Google Scholar 

  49. Zsombok A (2013) Vanilloid receptors—do they have a role in whole body metabolism? Evidence from TRPV1. J Diabetes Complicat 27:287–292

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank P. Barbez, E. Leclair, and J. Gamain for their advices and technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François-Xavier Gamelin.

Ethics declarations

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Additional information

Vincenzo Di Marzo and Elsa Heyman share the senior authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamelin, FX., Aucouturier, J., Iannotti, F.A. et al. Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity. J Physiol Biochem 72, 183–199 (2016). https://doi.org/10.1007/s13105-016-0469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0469-5

Keywords

Navigation