Skip to main content

Advertisement

Log in

Myostatin expression is regulated by underfeeding and neonatal programming in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Confusing results have been reported regarding the influence of nutritional status on myostatin levels. Some studies indicate that short-term fasting results in increased myostatin mRNA levels in skeletal muscle, evident in several species. In contrast, other studies have demonstrated either a decrease or no change in myostatin levels during fasting. In the present study, we investigated the effect of different patterns of food deprivation on muscle myostatin expression in both newborn and adult rats. Adjustment of litter size in neonatal rats is a well-established model to study the effect of early overfeeding or underfeeding on body composition and in this study resulted in modifications in the pattern of muscle myostatin expression. Rat pups growing in large litters (22–24 newborns) showed a decrease in muscle myostatin mRNA and protein levels at 24 days of age. Interestingly, these effects were maintained at 60 days of age despite rats having free access to food since weaning, thus suggesting that changes in myostatin expression induced by neonatal reduction of food intake are long-lasting. In contrast, no changes in myostatin mRNA levels were observed in adult rats when food intake was decreased during 7 days by either food restriction or central leptin treatment. Similar results were obtained when food restriction was maintained in adult rats for a longer period (7 weeks), despite significant muscle loss. Overall, these data suggest that myostatin gene expression is programmed by nutritional status in neonatal life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading (1999). Am J Physiol Regul Integr Comp Physiol 2:R601–R606

    Google Scholar 

  2. Carneiro I, Castro-Piedras I, Muñoz A, Labandeira-García JL, Devesa J, Arce VM (2008) Hypothyroidism is associated with increased myostatin expression in rats. J Endocrinol Invest 31:773–778

    PubMed  CAS  Google Scholar 

  3. Chauvigné F, Gabillard JC, Weil C, Rescan PY (2003) Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. Gen Comp Endocrinol 132:209–215

    Article  PubMed  Google Scholar 

  4. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95:14938–14943

    Article  PubMed  CAS  Google Scholar 

  5. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    Article  PubMed  CAS  Google Scholar 

  6. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, Georges M (2003) Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35:227–238

    Article  PubMed  CAS  Google Scholar 

  7. Guernec A, Chevalier B, Duclos MJ (2004) Nutrient supply enhances both IGF-I and MSTN mRNA levels in chicken skeletal muscle. Domest Anim Endocrinol 26:143–154

    Article  PubMed  CAS  Google Scholar 

  8. Jeanplong F, Bass JJ, Smith HK, Kirk SP, Kambadur R, Sharma M, Oldham JM (2003) Prolonged underfeeding of sheep increases myostatin and myogenic regulatory factor Myf-5 in skeletal muscle while IGF-I and myogenin are repressed. J Endocrinol 176:425–437

    Article  PubMed  CAS  Google Scholar 

  9. Ji S, Losinski RL, Cornelius SG, Frank GR, Willis GM, Gerrard DE, Depreux FF, Spurlock ME (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol 275:R1265–R2173

    PubMed  CAS  Google Scholar 

  10. Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–916

    PubMed  CAS  Google Scholar 

  11. Lalani R, Bhasin S, Byhower F, Tarnuzzer R, Grant M, Shen R, Asa S, Ezzat S, Gonzalez-Cadavid NF (2000) Myostatin and insulin-like growth factor-I and II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J Endocrinol 167:417–428

    Article  PubMed  CAS  Google Scholar 

  12. Larsen AE, Tunstall RJ, Carey KA, Nicholas G, Kambadur R, Crowe TC, Cameron-Smith D (2006) Actions of short-term fasting on human skeletal muscle myogenic and atrogenic gene expression. Ann Nutr Metab 50:476–481

    Article  PubMed  CAS  Google Scholar 

  13. Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    Article  PubMed  CAS  Google Scholar 

  14. Lee SJ, McPherron AC (2005) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98:9306–9311

    Article  Google Scholar 

  15. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Barker C, Ehrmantraut G, Holmstrom J, Trowell B, Gertz B, Jiang MS, Sebald SM, Matzuk M, Li E, Liang LF, Quattlebaum E, Stotish RL, Wolfman NM (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci USA 102:18117–18122

    Article  PubMed  CAS  Google Scholar 

  16. López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S, Raghay K, Rodríguez-Cuenca S, Deoliveira RM, Castañeda T, Datta R, Dong JZ, Culler M, Sleeman MW, Alvarez CV, Gallego R, Lelliott CJ, Carling D, Tschöp MH, Diéguez C, Vidal-Puig A (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7:389–399

    Article  PubMed  Google Scholar 

  17. López M, Seoane LM, Tovar S, García MC, Nogueiras R, Diéguez C, Señarís RM (2005) A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat. Diabetologia 48:140–148

    Article  PubMed  Google Scholar 

  18. López M, Tovar S, Vázquez MJ, Nogueiras R, Seoane LM, García M, Señarís RM, Diéguez C (2007) Perinatal overfeeding in rats results in increased levels of plasma leptin but unchanged cerebrospinal leptin in adulthood. Int J Obes 31:371–377

    Article  Google Scholar 

  19. López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, Martínez de Morentin PB, Tovar S, Nogueiras R, Carling D, Lelliott C, Gallego R, Oresic M, Chatterjee K, Saha AK, Rahmouni K, Diéguez C, Vidal-Puig A (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16:1001–1008

    Article  PubMed  Google Scholar 

  20. McCance RB (1962) Food, growth, and time. Lancet 2:671–676

    Article  PubMed  CAS  Google Scholar 

  21. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209:501–514

    Article  PubMed  CAS  Google Scholar 

  22. McPherron AC, Lawler AM, Lee S-J (1997) Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:83–90

    Article  PubMed  CAS  Google Scholar 

  23. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    Article  PubMed  CAS  Google Scholar 

  24. McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109:595–601

    PubMed  CAS  Google Scholar 

  25. Milan G, Dalla Nora E, Pilon C, Pagano C, Granzotto M, Manco M, Mingrone G, Vettor R (2004) Changes in muscle myostatin expression in obese subjects after weight loss. J Clin Endocrinol Metab 89:2724–2727

    Article  PubMed  CAS  Google Scholar 

  26. Oscai LB, McGarr JA (1978) Evidence that the amount of food consumed in early life fixes appetite in the rat. Am J Physiol 235:R141–R144

    PubMed  CAS  Google Scholar 

  27. Plagemann A, Harder T, Rake A, Waas T, Melchior K, Ziska T, Rohde W, Dörner G (1999) Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol 11:541–546

    Article  PubMed  CAS  Google Scholar 

  28. Plagemann A, Heidrich I, Gotz F, Rohde W, Dorner G (1992) Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp Clin Endocrinol 99:154–158

    Article  PubMed  CAS  Google Scholar 

  29. Reardon KA, Davis J, Kapsa RM, Choong P, Byrne E (2001) Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve 7:893–899

    Article  Google Scholar 

  30. Reisz-Porszasz S, Bhasin S, Artaza JN, Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ, Gonzalez-Cadavid NF (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 285:E876–E888

    PubMed  CAS  Google Scholar 

  31. Rios R, Carneiro I, Arce VM, Devesa J (2001) Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun 280:561–566

    Article  PubMed  CAS  Google Scholar 

  32. Rios R, Carneiro I, Arce VM, Devesa J (2003) Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 282:C993–C999

    Google Scholar 

  33. Rodgers BD, Weber GM, Kelley KM, Levine MA (2003) Prolonged fasting and cortisol reduce myostatin mRNA levels in tilapia larvae; short-term fasting elevates. Am J Physiol 284:R1277–R1286

    CAS  Google Scholar 

  34. Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688

    Article  PubMed  CAS  Google Scholar 

  35. Schulte JN, Yarasheski KE (2001) Effects of resistance training on the rate of muscle protein synthesis in frail elderly people. Int J Sport Nutr Exerc Metab 11:S111–S118

    PubMed  Google Scholar 

  36. Szabo G, Dallman G, Muller G, Patthy L, Soller M, Varga L (1998) A deletion in the myostatin gene causes the compact (cmpt) hypermuscular mutation in mice. Mamm Genome 9:671–672

    Article  PubMed  CAS  Google Scholar 

  37. Terova G, Bernardini G, Binelli G, Gornati R, Saroglia M (2006) cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their abundance levels. Domest Anim Endocrinol 30:304–319

    Article  PubMed  CAS  Google Scholar 

  38. Walker KS, Kambadur R, Sharma M, Smith HK (2004) Resistance training alters plasma myostatin but not IGF-1 in healthy men. Med Sci Sports Exerc 36:787–793

    PubMed  CAS  Google Scholar 

  39. Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14:103–110

    PubMed  CAS  Google Scholar 

  40. Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA (2007) Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol Endocrinol Metab 292:E985–E991

    Article  PubMed  CAS  Google Scholar 

  41. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O'Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300:965–971

    Article  PubMed  CAS  Google Scholar 

  42. Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ (2003) Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA 100:15842–15846

    Article  PubMed  CAS  Google Scholar 

  43. Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD, Wall RJ (2001) Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev 60:351–361

    Article  PubMed  CAS  Google Scholar 

  44. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296:1486–1488

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are in debt to Dr. Sulay Tovar (Department of Physiology, University of Santiago de Compostela) for her help with the experiments involving leptin treatment and Dr. Johan Fernø and Dr. Silje Skrede (University of Bergen, Norway) for their suggestions and comments. This work was supported by grants from Xunta de Galicia (VA: PGIDIT032PXIC20801PN) and Ministerio de Educación y Ciencia (VA: BFU2005-06509, ML: RyC-2007-00211). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of ISCIII.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Arce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carneiro, I., González, T., López, M. et al. Myostatin expression is regulated by underfeeding and neonatal programming in rats. J Physiol Biochem 69, 15–23 (2013). https://doi.org/10.1007/s13105-012-0183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0183-x

Keywords

Navigation