Skip to main content
Log in

The effect of losartan and carvedilol on renal haemodynamics and altered metabolism in fructose-fed Sprague–Dawley rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the effects of losartan and carvedilol on metabolic parameters and renal haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of fructose-fed rat. Thirty-six Sprague–Dawley rats were fed for 8 weeks either 20% fructose solution (F) or tap water (C) ad libitum. F or C group received either losartan or carvedilol (10 mg/kg p.o.) daily for the last 3 weeks of the study (FL and L) and (FCV and CV), respectively, then in acute studies the renal vasoconstrictor actions of Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. Data, mean ± SEM were analysed using ANOVA with significance at P <0.05. Losartan and carvedilol decreased the area under the glucose tolerance curve of the fructose-fed group. The responses (%) to NA, PE, ME and Ang II in F were lower (P <0.05) than C (F vs. C, 17 ± 2 vs. 38 ± 3; 24 ± 2 vs. 48 ± 2; 12 ± 2 vs. 34 ± 2; 17 ± 2 vs. 26 ± 2), respectively. L had higher (P <0.05) responses to NA and PE while CV had blunted (P <0.05) responses to NA, PE and Ang II compared to C (L, CV vs. C, 47 ± 3, 9 ± 2 vs. 38 ± 3; 61 ± 3, 29 ± 3 vs. 48 ± 2; 16 ± 3, 4 ± 3 vs. 26 ± 2), respectively. FL but not FCV group had enhanced (P <0.05) responses to NA, PE and ME compared to F (FL vs. F, 33 ± 3 vs. 17 ± 2; 45 ± 3 vs. 24 ± 2; 26 ± 3 vs. 12 ± 2), respectively. Losartan and carvedilol had an important ameliorating effect on fructose-induced insulin resistance. Losartan treatment could be an effective tool to restore normal vascular reactivity in the renal circulation of the fructose-fed rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbas SA, Munavvar AS, Abdullah NA, Johns EJ (2006) Involvement of α1-adrenoceptor subtypes in the cardiac failure in spontaneously hypertensive rats. J Basic & Applied Sci 2:59–69

    CAS  Google Scholar 

  2. Abdulla MH, Sattar MA, Abdullah NA, Hazim AI, Anand Swarup KR, Rathore HA, Khan MA, Johns EJ (2008) Inhibition of Ang II and renal sympathetic nerve influence dopamine-and isoprenaline-induced renal haemodynamic changes in normal Wistar–Kyoto and spontaneously hypertensive rats. Auton Autacoid Pharmacol 28(4):95–101

    Article  PubMed  CAS  Google Scholar 

  3. Abdulla MH, Sattar MA, Abdullah NA, Khan AH, Anand Swarup KR, Rathore HA, Kazi RN, Basri F, Johns EJ (2011) Effect of renal sympathetic nerve on adrenergically and angiotensin II-induced renal vasoconstriction in normal Wistar–Kyoto rats. Ups J Med Sci 116(1):18–25

    Article  PubMed  Google Scholar 

  4. Abdulla MH, Sattar MA, Abdullah NA, Khan MA, Abdallah HH, Johns EJ (2009) Chronic treatment with losartan and carvedilol differentially modulates renal vascular responses to sympathomimetics compared to treatment with individual agents in normal Wistar Kyoto and spontaneously hypertensive rats. Eur J Pharmacol 612(1–3):69–74

    Article  PubMed  CAS  Google Scholar 

  5. Abdulla MH, Sattar MA, Abdullah NA, Khan MA, Anand Swarup KR, Johns EJ (2011) The contribution of alpha(1B)-adrenoceptor subtype in the renal vasculature of fructose-fed Sprague–Dawley rats. Eur J Nutr 50:251–260

    Article  PubMed  CAS  Google Scholar 

  6. Abdulla MH, Sattar MA, Abdullah NA, Khan MA, Anand Swarup KR, Johns EJ (2011) The effect of losartan and carvedilol on vasopressor responses to adrenergic agonists and angiotensin II in the systemic circulation of Sprague Dawley rats. Auton Autacoid Pharmacol 31(1–2):13–20

    Article  PubMed  CAS  Google Scholar 

  7. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Khan MA (2011) Evidence for the role of alpha(1A)-adrenoceptor subtype in the control of renal haemodynamics in fructose-fed Sprague–Dawley rat. Eur J Nutr 50(8):689–697

    Article  PubMed  CAS  Google Scholar 

  8. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Khan MA, Rathore HA (2011) High-fructose feeding impacts on the adrenergic control of renal haemodynamics in the rat. Br J Nutr. doi:10.1017/S0007114511002716

  9. Abdulla MH, Sattar MA, Khan MA, Abdullah NA, Johns EJ (2009) Influence of sympathetic and AT-receptor blockade on angiotensin II and adrenergic agonist-induced renal vasoconstrictions in spontaneously hypertensive rats. Acta Physiol (Oxf) 195(3):397–404

    Article  CAS  Google Scholar 

  10. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ (2004) The contribution of adrenoceptor subtype(s) in the renal vasculature of diabetic spontaneously hypertensive rats. Br J Pharmacol 142(4):719–726

    Article  PubMed  CAS  Google Scholar 

  11. Bakris GL, Fonseca V, Katholi RE, McGill JB, Messerli FH, Phillips RA, Raskin P, Wright JT Jr, Oakes R, Lukas MA, Anderson KM, Bell DS (2004) Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 292(18):2227–2236

    Article  PubMed  CAS  Google Scholar 

  12. Basat O, Ucak S, Seber S, Oztekin E, Altuntas Y (2006) After myocardial infarction carvedilol improves insulin resistance compared to metoprolol. Clin Res Cardiol 95(2):99–104

    Article  PubMed  Google Scholar 

  13. Batenburg WW, van Esch JH, Garrelds IM, Jorde U, Lamers JM, Dekkers DH, Walther T, Kellett E, Milligan G, van Kats JP, Danser AH (2006) Carvedilol-induced antagonism of angiotensin II: a matter of alpha1-adrenoceptor blockade. J Hypertens 24(7):1355–1363

    Article  PubMed  CAS  Google Scholar 

  14. Bayorh MA, Ganafa AA, Eatman D, Walton M, Feuerstein GZ (2005) Simvastatin and losartan enhance nitric oxide and reduce oxidative stress in salt-induced hypertension. Am J Hypertens 18(11):1496–1502

    Article  PubMed  CAS  Google Scholar 

  15. Bell DS (2004) Advantages of a third-generation beta-blocker in patients with diabetes mellitus. Am J Cardiol 93(9A):49B–52B

    Article  PubMed  CAS  Google Scholar 

  16. Bhatt P, Makwana D, Santani D, Goyal R (2007) Comparative effectiveness of carvedilol and propranolol on glycemic control and insulin resistance associated with L-thyroxin-induced hyperthyroidism—an experimental study. Can J Physiol Pharmacol 85(5):514–520

    Article  PubMed  CAS  Google Scholar 

  17. Boustany CM, Brown DR, Randall DC, Cassis LA (2005) AT1-receptor antagonism reverses the blood pressure elevation associated with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 289(1):R181–R186

    Article  PubMed  CAS  Google Scholar 

  18. Brooks DP, Short BG, Cyronak MJ, Contino LC, DiCristo M, Wang YX, Ruffolo RR Jr (1993) Comparison between carvedilol and captopril in rats with partial ablation-induced chronic renal failure. Br J Pharmacol 109(2):581–586

    Article  PubMed  CAS  Google Scholar 

  19. Bunnag P, Hori MT, Ormsby B, Berger ME, Golub MS, Tuck ML (1997) Impaired in vivo adrenergic responses in diet-induced hypertensive rats. Hypertens Res 20(1):17–21

    Article  PubMed  CAS  Google Scholar 

  20. Cabassi A, Coghi P, Govoni P, Barouhiel E, Speroni E, Cavazzini S, Cantoni AM, Scandroglio R, Fiaccadori E (2005) Sympathetic modulation by carvedilol and losartan reduces angiotensin II-mediated lipolysis in subcutaneous and visceral fat. J Clin Endocrinol Metab 90(5):2888–2897

    Article  PubMed  CAS  Google Scholar 

  21. Cotter MA, Cameron NE (1995) Neuroprotective effects of carvedilol in diabetic rats: prevention of defective peripheral nerve perfusion and conduction velocity. Naunyn Schmiedebergs Arch Pharmacol 351(6):630–635

    Article  PubMed  CAS  Google Scholar 

  22. de Zeeuw D, Gansevoort RT, Dullaart RP, de Jong PE (1995) Angiotensin II antagonism improves the lipoprotein profile in patients with nephrotic syndrome. J Hypertens Suppl 13(1):S53–S58

    Article  PubMed  Google Scholar 

  23. Ferrannini E, Natali A, Capaldo B, Lehtovirta M, Jacob S, Yki-Jarvinen H (1997) Insulin resistance, hyperinsulinemia, and blood pressure: role of age and obesity. European Group for the Study of Insulin Resistance (EGIR). Hypertension 30(5):1144–1149

    Article  PubMed  CAS  Google Scholar 

  24. Fonseca V, Sharma PP, Shah M, Deedwania P (2011) Risk of new-onset diabetes mellitus associated with beta-blocker treatment for hypertension. Curr Med Res Opin 27(4):799–807

    Article  PubMed  Google Scholar 

  25. Garcia-Sainz JA (1993) Alpha 1-adrenergic action: receptor subtypes, signal transduction and regulation. Cell Signal 5(5):539–547

    Article  PubMed  CAS  Google Scholar 

  26. Gardiner SM, Kemp PA, March JE, Bennett T (1993) Regional haemodynamic effects of angiotensin II (3–8) in conscious rats. Br J Pharmacol 110(1):159–162

    Article  PubMed  CAS  Google Scholar 

  27. Gellai M, DeWolf R, Ruffolo RR Jr (1990) Effect of carvedilol on renal hemodynamics and renal excretory function in spontaneously hypertensive rats. Pharmacology 41(4):200–206

    Article  PubMed  CAS  Google Scholar 

  28. Hryniewicz K, Androne AS, Hudaihed A, Katz SD (2003) Comparative effects of carvedilol and metoprolol on regional vascular responses to adrenergic stimuli in normal subjects and patients with chronic heart failure. Circulation 108(8):971–976

    Article  PubMed  CAS  Google Scholar 

  29. Hsieh PS, Tai YH, Loh CH, Shih KC, Cheng WT, Chu CH (2005) Functional interaction of AT1 and AT2 receptors in fructose-induced insulin resistance and hypertension in rats. Metabolism 54(2):157–164

    Article  PubMed  CAS  Google Scholar 

  30. Huang CL, Davis G, Johns EJ (1991) A study of the action of angiotensin II on perfusion through the cortex and papilla of the rat kidney. Exp Physiol 76(5):787–798

    PubMed  CAS  Google Scholar 

  31. Huang F, Lezama MA, Ontiveros JA, Bravo G, Villafana S, del-Rio-Navarro BE, Hong E (2010) Effect of losartan on vascular function in fructose-fed rats: the role of perivascular adipose tissue. Clin Exp Hypertens 32(2):98–104

    Article  PubMed  CAS  Google Scholar 

  32. Isganaitis E, Lustig RH (2005) Fast food, central nervous system insulin resistance, and obesity. Arterioscler Thromb Vasc Biol 25(12):2451–2462

    Article  PubMed  CAS  Google Scholar 

  33. Iyer SN, Katovich MJ (1996) Effect of acute and chronic losartan treatment on glucose tolerance and insulin sensitivity in fructose-fed rats. Am J Hypertens 9(7):662–668

    Article  PubMed  CAS  Google Scholar 

  34. Jurgens H, Haass W, Castaneda TR, Schurmann A, Koebnick C, Dombrowski F, Otto B, Nawrocki AR, Scherer PE, Spranger J, Ristow M, Joost HG, Havel PJ, Tschop MH (2005) Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 13(7):1146–1156

    Article  PubMed  Google Scholar 

  35. Just A, Olson AJ, Whitten CL, Arendshorst WJ (2007) Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide. Am J Physiol Heart Circ Physiol 292(1):H83–H92

    Article  PubMed  CAS  Google Scholar 

  36. Kalinowski L, Dobrucki LW, Szczepanska-Konkel M, Jankowski M, Martyniec L, Angielski S, Malinski T (2003) Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: a novel mechanism for antihypertensive action. Circulation 107(21):2747–2752

    Article  PubMed  CAS  Google Scholar 

  37. Khan AH, Sattar MA, Abdullah NA, Johns EJ (2009) Effect of calcium channel blockade on adrenergically induced renal vasoconstriction in rat models of renal impairment. Clin Exp Pharmacol Physiol 36(5–6):501–508

    Article  PubMed  CAS  Google Scholar 

  38. Khan MA, Sattar MA, Abdullah NA, Johns EJ (2008) Alpha1B-adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol Sin 29(2):193–203

    Article  PubMed  Google Scholar 

  39. Kline RL, Liu F (1994) Modification of pressure natriuresis by long-term losartan in spontaneously hypertensive rats. Hypertension 24(4):467–473

    Article  PubMed  CAS  Google Scholar 

  40. Li XC, Campbell DJ, Ohishi M, Yuan S, Zhuo JL (2006) AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol 290(5):F1024–F1033

    Article  PubMed  CAS  Google Scholar 

  41. Matsukawa T, Gotoh E, Minamisawa K, Kihara M, Ueda S, Shionoiri H, Ishii M (1991) Effects of intravenous infusions of angiotensin II on muscle sympathetic nerve activity in humans. Am J Physiol 261(3 Pt 2):R690–R696

    PubMed  CAS  Google Scholar 

  42. Mattson DL, Roman RJ (1991) Role of kinins and angiotensin II in the renal hemodynamic response to captopril. Am J Physiol 260(5 Pt 2):F670–F679

    PubMed  CAS  Google Scholar 

  43. Miao Y, Dobre D, Heerspink HJ, Brenner BM, Cooper ME, Parving HH, Shahinfar S, Grobbee D, de Zeeuw D (2011) Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia 54(1):44–50

    Article  PubMed  CAS  Google Scholar 

  44. Morioka Y, Koike H, Ikezumi Y, Ito Y, Oyanagi A, Gejyo F, Shimizu F, Kawachi H (2001) Podocyte injuries exacerbate mesangial proliferative glomerulonephritis. Kidney Int 60(6):2192–2204

    Article  PubMed  CAS  Google Scholar 

  45. Navarro-Cid J, Maeso R, Perez-Vizcaino F, Cachofeiro V, Ruilope LM, Tamargo J, Lahera V (1995) Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hypertension 26(6 Pt 2):1074–1078

    Article  PubMed  CAS  Google Scholar 

  46. Navarro-Cid J, Maeso R, Perez-Vizcaino F, Casal MC, Cachofeiro V, Ruilope LM, Tamargo J, Lahera V (1996) Effects of antihypertensive drugs on blood pressure and metabolic alterations in the fructose-induced hypertensive rat. Am J Hypertens 9(7):669–674

    Article  PubMed  CAS  Google Scholar 

  47. Rodriguez-Perez JC, Losada A, Anabitarte A, Cabrera J, Llobet J, Palop L, Plaza C (1997) Effects of the novel multiple-action agent carvedilol on severe nephrosclerosis in renal ablated rats. J Pharmacol Exp Ther 283(1):336–344

    PubMed  CAS  Google Scholar 

  48. Rodriguez Perez JC, Cabrera JJ, Anabitarte A, Plaza ML, Losada A, Garcia Suarez P, Afonso JL (2001) Effects of carvedilol in rats with induced chronic kidney failure. Nefrologia 21(1):52–58

    PubMed  CAS  Google Scholar 

  49. Roman RJ, Mattson DL, Cowley AW Jr (2001) Measurement of regional blood flow in the kidney using laser-Doppler flowmetry. Methods Mol Med 51:407–426

    PubMed  CAS  Google Scholar 

  50. Rosen P, Ohly P, Gleichmann H (1997) Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rat. J Hypertens Suppl 15(1):S31–S38

    PubMed  CAS  Google Scholar 

  51. Sattar MA, Johns EJ (1994) Evidence for an alpha 1-adrenoceptor subtype mediating adrenergic vasoconstriction in Wistar normotensive and stroke-prone spontaneously hypertensive rat kidney. J Cardiovasc Pharmacol 23(2):232–239

    Article  PubMed  CAS  Google Scholar 

  52. Schnabel P, Maack C, Mies F, Tyroller S, Scheer A, Bohm M (2000) Binding properties of beta-blockers at recombinant beta1-, beta2-, and beta3-adrenoceptors. J Cardiovasc Pharmacol 36(4):466–471

    Article  PubMed  CAS  Google Scholar 

  53. Soltis EE, Jewell AL, Dwoskin LP, Cassis LA (1993) Acute and chronic effects of losartan (DuP 753) on blood pressure and vascular reactivity in normotensive rats. Clin Exp Hypertens 15(1):171–184

    Article  PubMed  CAS  Google Scholar 

  54. Taylor BA, Phillips SJ (1996) Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 34(3):389–398

    Article  PubMed  CAS  Google Scholar 

  55. Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, Havel PJ (2004) Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89(6):2963–2972

    Article  PubMed  CAS  Google Scholar 

  56. Tran LT, MacLeod KM, McNeill JH (2009) Chronic etanercept treatment prevents the development of hypertension in fructose-fed rats. Mol Cell Biochem 330(1–2):219–228

    Article  PubMed  CAS  Google Scholar 

  57. Verma S, Bhanot S, McNeill JH (1999) Sympathectomy prevents fructose-induced hyperinsulinemia and hypertension. Eur J Pharmacol 373(2–3):R1–R4

    Article  PubMed  CAS  Google Scholar 

  58. Viswanad B, Srinivasan K, Kaul CL, Ramarao P (2006) Effect of tempol on altered angiotensin II and acetylcholine-mediated vascular responses in thoracic aorta isolated from rats with insulin resistance. Pharmacol Res 53(3):209–215

    Article  PubMed  CAS  Google Scholar 

  59. Wong VY, Laping NJ, Nelson AH, Contino LC, Olson BA, Gygielko E, Campbell WG Jr, Barone F, Brooks DP (2001) Renoprotective effects of carvedilol in hypertensive-stroke prone rats may involve inhibition of TGF beta expression. Br J Pharmacol 134(5):977–984

    Article  PubMed  CAS  Google Scholar 

  60. Xu L, Brooks VL (1996) ANG II chronically supports renal and lumbar sympathetic activity in sodium-deprived, conscious rats. Am J Physiol 271(6 Pt 2):H2591–H2598

    PubMed  CAS  Google Scholar 

  61. Ye S, Zhong H, Duong VN, Campese VM (2002) Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertension 39(6):1101–1106

    Article  PubMed  CAS  Google Scholar 

  62. Yue TL, Cheng HY, Lysko PG, McKenna PJ, Feuerstein R, Gu JL, Lysko KA, Davis LL, Feuerstein G (1992) Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther 263(1):92–98

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Mohammed H. Abdulla is a recipient of Vice Chancellor’s Award and USM fellowship from Institute of Postgraduate Studies (IPS) of Universiti Sains Malaysia, all gratefully acknowledged. This study was carried out under the support of Research University Grant of Universiti Sains Malaysia to Munavvar A. Sattar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Abdulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulla, M.H., Sattar, M.A., Abdullah, N.A. et al. The effect of losartan and carvedilol on renal haemodynamics and altered metabolism in fructose-fed Sprague–Dawley rats. J Physiol Biochem 68, 353–363 (2012). https://doi.org/10.1007/s13105-012-0147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0147-1

Keywords

Navigation