Skip to main content

Advertisement

Log in

Tempol protects the gallbladder against ischemia/reperfusion

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Impairment in gallbladder emptying, increase in residual volume, and reduced smooth muscle contractility are hallmarks of acute acalculous cholecystitis and seem to be related to ischemia/reperfusion (I/R). This study was designed to determine the effects of tempol, a general antioxidant, on I/R-induced changes in gallbladder contractile capacity, the mechanisms involved in the contractile process, and the level of inflammatory mediators. Experimental gallbladder I/R was induced in male guinea pigs by common bile duct ligation for 2 days, then a deligation of the duct was performed and after 2 days the animals were sacrificed. A group of animals was treated with tempol, administered in the drinking water at 1 mmol/l for 10 days prior the bile duct ligation and until animal sacrifice. Isometric tension recordings showed that KCl and cholecystokinin-induced contractions were impaired by I/R, which correlated with decreased F-actin content and detrimental effects on Ca2+ influx. In addition, I/R depolarized mitochondrial membrane potential, as indicated by the reduction of the heterogeneity of the rhodamine123 fluorescence signal, and increased the expression of NF-κB, COX-2, and iNOS. Tempol treatment improved contractility via normalization of Ca2+ handling and improvement of F-actin content. Moreover, the antioxidant ameliorated mitochondrial polarity and normalized the expression levels of the inflammatory mediators. These results show that antioxidant treatment protects the gallbladder from I/R, indicating the potential therapeutic benefits of tempol in I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdallah DM, El Abhar HS, Abdel-Aziz DH (2009) TEMPOL, a membrane-permeable radical scavenger, attenuates gastric mucosal damage induced by ischemia/reperfusion: a key role for superoxide anion. Eur J Pharmacol 603:93–97

    Article  CAS  PubMed  Google Scholar 

  2. Barie PS, Eachempati SR (2003) Acute acalculous cholecystitis. Curr Gastroenterol Rep 5:302–309

    Article  PubMed  Google Scholar 

  3. Barth BM, Stewart-Smeets S, Kuhn TB (2009) Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase. Mol Cell Neurosci 41:274–285

    Article  CAS  PubMed  Google Scholar 

  4. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291:C1082–C1088

    Article  CAS  PubMed  Google Scholar 

  5. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2008) Age-related alterations in Ca2+ signals and mitochondrial membrane potential in exocrine cells are prevented by melatonin. J Pineal Res 45:191–198

    Article  CAS  PubMed  Google Scholar 

  6. Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, Thiemermann C (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58:658–673

    Article  CAS  PubMed  Google Scholar 

  7. Cullen JJ, Conklin JL, Ephgrave KS, Oberley LW (1999) The role of antioxidant enzymes in the control of opossum gallbladder motility. J Surg Res 86:155–161

    Article  CAS  PubMed  Google Scholar 

  8. Dong WG, Mei Q, Yu JP, Xu JM, Xiang L, Xu Y (2003) Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J Gastroenterol 9:1307–1311

    CAS  PubMed  Google Scholar 

  9. Fujii T, Takaoka M, Ohkita M, Matsumura Y (2005) Tempol protects against ischemic acute renal failure by inhibiting renal noradrenaline overflow and endothelin-1 overproduction. Biol Pharm Bull 28:641–645

    Article  CAS  PubMed  Google Scholar 

  10. Gariboldi MB, Lucchi S, Caserini C, Supino R, Oliva C, Monti E (1998) Antiproliferative effect of the piperidine nitroxide TEMPOL on neoplastic and nonneoplastic mammalian cell lines. Free Radic Biol Med 24:913–923

    Article  CAS  PubMed  Google Scholar 

  11. Gomez-Pinilla PJ, Morales S, Camello-Almaraz C, Moreno R, Pozo MJ, Camello PJ (2006) Changes in guinea pig gallbladder smooth muscle Ca2+ homeostasis by acute acalculous cholecystitis. Am J Physiol Gastrointest Liver Physiol 290:G14–G22

    Article  CAS  PubMed  Google Scholar 

  12. Gomez-Pinilla PJ, Camello PJ, Pozo MJ (2007) Effects of melatonin on gallbladder neuromuscular function in acute cholecystitis. J Pharmacol Exp Ther 323:138–146

    Article  CAS  PubMed  Google Scholar 

  13. Gomez-Pinilla PJ, Camello PJ, Pozo MJ (2008) Protective effect of melatonin on Ca2+ homeostasis and contractility in acute cholecystitis. J Pineal Res 44:250–260

    Article  CAS  PubMed  Google Scholar 

  14. Huttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 40:445–456

    Article  CAS  PubMed  Google Scholar 

  15. Johnson LB (1987) The importance of early diagnosis of acute acalculus cholecystitis. Surg Gynecol Obstet 164:197–203

    CAS  PubMed  Google Scholar 

  16. Kankuri E, Asmawi MZ, Korpela R, Vapaatalo H, Moilanen E (1999) Induction of iNOS in a rat model of acute colitis. Inflammation 23:141–152

    Article  CAS  PubMed  Google Scholar 

  17. Kato N, Yanaka K, Hyodo K, Homma K, Nagase S, Nose T (2003) Stable nitroxide Tempol ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischemia. Brain Res 979:188–193

    Article  CAS  PubMed  Google Scholar 

  18. Kim JS, Jin Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 290:H2024–H2034

    Article  CAS  PubMed  Google Scholar 

  19. Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, Samuni A (1996) Do nitroxide antioxidants act as scavengers of O2-. or as SOD mimics? J Biol Chem 271:26026–26031

    Article  CAS  PubMed  Google Scholar 

  20. Laight DW, Carrier MJ, Anggard EE (1997) Investigation of role for oxidant stress in vascular tolerance development to glyceryl trinitrate in vitro. Br J Pharmacol 120:1477–1482

    Article  CAS  PubMed  Google Scholar 

  21. Levraut J, Iwase H, Shao ZH, Vanden Hoek TL, Schumacker PT (2003) Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol 284:H549–H558

    CAS  PubMed  Google Scholar 

  22. McCormick J, Barry SP, Sivarajah A, Stefanutti G, Townsend PA, Lawrence KM, Eaton S, Knight RA, Thiemermann C, Latchman DS, Stephanou A (2006) Free radical scavenging inhibits STAT phosphorylation following in vivo ischemia/reperfusion injury. FASEB J 20:2115–2117

    Article  CAS  PubMed  Google Scholar 

  23. McDonald MC, Zacharowski K, Bowes J, Cuzzocrea S, Thiemermann C (1999) Tempol reduces infarct size in rodent models of regional myocardial ischemia and reperfusion. Free Radic Biol Med 27:493–503

    Article  CAS  PubMed  Google Scholar 

  24. Morales S, Camello PJ, Alcon S, Salido GM, Mawe G, Pozo MJ (2004) Coactivation of capacitative calcium entry and L-type calcium channels in guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol 286:G1090–G1100

    Article  CAS  PubMed  Google Scholar 

  25. Myers SI, Haley-Russell D, Parks L, Husband K (1988) Common bile duct ligation in rabbit: a new model of acute cholecystitis description of histology and bile analysis. J Surg Res 45:556–564

    Article  CAS  PubMed  Google Scholar 

  26. Parkman HP, Bogar LJ, Bartula LL, Pagano AP, Thomas RM, Myers SI (1999) Effect of experimental acalculous cholecystitis on gallbladder smooth muscle contractility. Dig Dis Sci 44:2235–2243

    Article  CAS  PubMed  Google Scholar 

  27. Parkman HP, James AN, Bogar LJ, Bartula LL, Thomas RM, Ryan JP, Myers SI (2000) Effect of acalculous cholecystitis on gallbladder neuromuscular transmission and contractility. J Surg Res 88:186–192

    Article  CAS  PubMed  Google Scholar 

  28. Parkman HP, James AN, Thomas RM, Bartula LL, Ryan JP, Myers SI (2001) Effect of indomethacin on gallbladder inflammation and contractility during acute cholecystitis. J Surg Res 96:135–142

    Article  CAS  PubMed  Google Scholar 

  29. Pozo MJ, Camello PJ, Mawe GM (2004) Chemical mediators of gallbladder dysmotility. Curr Med Chem 11:1801–1812

    CAS  PubMed  Google Scholar 

  30. Qian Y, Luo J, Leonard SS, Harris GK, Millecchia L, Flynn DC, Shi X (2007) Hydrogen peroxide formation and actin filament reorganization by Cdc42 are essential for ethanol-induced in vitro angiogenesis. Nihon Arukoru Yakubutsu Igakkai Zasshi 42:605–609

    CAS  PubMed  Google Scholar 

  31. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Scholmerich J, Gross V (1998) Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:357–369

    Article  CAS  PubMed  Google Scholar 

  32. Sakamoto C (1998) Roles of COX-1 and COX-2 in gastrointestinal pathophysiology. J Gastroenterol 33:618–624

    Article  CAS  PubMed  Google Scholar 

  33. Schnackenberg CG, Wilcox CS (1999) Two-week administration of tempol attenuates both hypertension and renal excretion of 8-Iso prostaglandin f2alpha. Hypertension 33:424–428

    CAS  PubMed  Google Scholar 

  34. Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor kappa B inflammatory bowel disease. Gut 42:477–484

    Article  CAS  PubMed  Google Scholar 

  35. Sepodes B, Maio R, Pinto R, Marques C, Mendes-do-Vale J, McDonald MC, Thiemermann C, Mota-Filipe H (2004) Tempol, an intracelullar free radical scavenger, reduces liver injury in hepatic ischemia-reperfusion in the rat. Transplant Proc 36:849–853

    Article  CAS  PubMed  Google Scholar 

  36. Snook JH, Li J, Helmke BP, Guilford WH (2008) Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility. Free Radic Biol Med 44:14–23

    Article  CAS  PubMed  Google Scholar 

  37. Teke Z, Kabay B, Ozden A, Yenisey C, Bir F, Demirkan NC, Bicakci T, Erdem E (2008) Effects of tempol, a membrane-permeable radical scavenger, on local and remote organ injuries caused by intestinal ischemia/reperfusion in rats. J Surg Res 149:259–271

    Article  CAS  PubMed  Google Scholar 

  38. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  Google Scholar 

  39. Xiao ZL, Chen Q, Biancani P, Behar J (2001) Abnormalities of gallbladder muscle associated with acute inflammation in guinea pigs. Am J Physiol Gastrointest Liver Physiol 281:G490–G497

    CAS  PubMed  Google Scholar 

  40. Xiong J, Camello PJ, Verkhratsky A, Toescu EC (2004) Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Neurobiol Aging 25:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Purificación Delgado for technical assistance. This work was supported by Ministerio de Educacion y Ciencia (BFU 2007-60563), Junta de Extremadura (PRI07A069), FEDER and Instituto de Salud Carlos III (RETICEF: RD06/0013/1012 and RD06/0013/0002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Pozo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez-Pinilla, P.J., Camello, P.J., Tresguerres, J.A.F. et al. Tempol protects the gallbladder against ischemia/reperfusion. J Physiol Biochem 66, 161–172 (2010). https://doi.org/10.1007/s13105-010-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0021-y

Keywords

Navigation