Skip to main content
Log in

Cucurbit aphid-borne yellows virus in Egypt

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

During 2010, yellowing symptoms were frequently observed in cultivated squash fields in Egypt. A total of 717 symptomatic squash leaf samples were collected from four regions where squash cultivation is of economic importance for the country: Kafrelsheikh, El-Behira, El-Sharkia and El-Ismailia. Serological analysis showed that 95.6% of the symptomatic squash samples were infected by Cucurbit aphid-borne yellows virus (CABYV), and visual estimation of the incidence of yellowing symptoms suggested a very high incidence of CABYV in the fields. Twelve CABYV isolates were characterized by sequencing two regions of the viral genome, open reading frame (ORF) 3 and ORFs 4/5. Overall, Egyptian isolates were very similar among them, and had higher similarity values with a French than with a Chinese isolate. The average nucleotide diversity for ORF 3 was significantly higher than for the other two regions, indicating that variability is not evenly distributed along the viral genome. The ratios between nucleotide diversity values in non-synonymous (d N ) and synonymous (d S) positions (d N /d S) for each ORF showed that the three ORFs are evolving under different pressures, although predominantly under purifying selection. Phylogenetic analyses revealed that these Egyptian isolates, with only one exception, shared the same clade with a French isolate. Moreover, these analyses suggested that Egyptian isolates belong to the Mediterranean group described previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Jawdah, Y., Sobh, H., El-Zammar, S., Fayad, A., & Lecoq, H. (2000). Incidence and management of virus diseases of cucurbits in Lebanon. Crop Protection, 19, 217–224.

    Article  Google Scholar 

  • Bananej, K., Vahdat, A., Predajna, L., & Glasa, M. (2009). Molecular characterization of geographically different cucurbit aphid-borne yellows virus isolates. Acta Virologica, 53, 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Bonfield, J. K., Smith, K. F., & Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research, 24, 4992–4999.

    Article  Google Scholar 

  • Clark, M. F., & Adams, A. N. (1977). Characteristics of the microplate method of the enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.

    Article  PubMed  CAS  Google Scholar 

  • FAO (2010). Statistical agriculture databases. httm://faostat.fao.org/

  • Juarez, M., Kassem, M., Sempere, R., & Aranda, M. (2006). Cucurbit aphid-borne yellows virus in Spain. In G. P. Rao, P. Lavakumar, & R. J. Holguín-Peña (Eds.), Characterization, diagnosis and management of plant viruses, Vol. 3 (pp. 303-315). Vegetable and pulse crops. Houston, TX, USA: Studium Press.

  • Juarez, M., Truniger, V., & Aranda, M. A. (2004). First report of cucurbit aphid-borne yellows virus in Spain. Plant Disease, 88, 907.

    Article  Google Scholar 

  • Kassem, M. A., Sempere, R. N., Juárez, M., Aranda, M. A., & Truniger, V. (2007). Cucurbit aphid-borne yellows virus is prevalent in field-grown cucurbit crops of southeastern Spain. Plant Disease, 91, 232–238.

    Article  CAS  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Lecoq, H. (1999). Epidemiology of cucurbit aphid-borne yellows virus. In H. G. Smith & H. Baker (Eds.), The Luteoviridae (pp. 243–248). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Lecoq, H. (2003). Cucurbits. In G. Loebenstein & G. Thottapilly (Eds.), Virus and virus-like diseases of major crops in developing countries (pp. 665–687). Dordrecht, the Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lecoq, H., Bourdin, D., Wipf-Scheibel, C., Bon, M., Lot, H., Lemaire, O., et al. (1992). A new yellowing disease of cucurbits caused by a luteovirus, Cucurbit aphid-borne yellows virus. Plant Pathology, 41, 749–761.

    Article  Google Scholar 

  • Lemaire, O., Gubler, W. D., Valencia, J., Lecoq, H., & Falk, B. W. (1993). First report of cucurbit aphid-borne yellows luteovirus in the Unites States. Plant Disease, 77, 1169.

    Article  Google Scholar 

  • Li, W.-H. (1993). Unbiased estimation of the rates of synonymous and non-synonymous substitution. Journal of Molecular Evolution, 36, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D., Williamson, C., & Posada, D. (2005). RDP2: recombination detection and analysis from sequence alignments. Bioinformatics, 21, 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Mayo, M. A., & D’Arcy, C. J. (1999). Family Luteoviridae: A reclassification of luteoviruses. In H. G. Smith & H. Barker (Eds.), The Luteoviridae (pp. 15–22). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Mnari-Hattab, M., Gauthier, N., & Zouba, A. (2009). Biological and molecular characterization of the Cucurbit aphid-borne yellows virus affecting cucurbits in Tunisia. Plant Disease, 93, 1065–1072.

    Article  CAS  Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. New York, NY: Columbia University Press.

    Google Scholar 

  • Pagán, I., & Holmes, E. C. (2010). Long-term evolution of the Luteoviridae: time-scale and mode of virus speciation. Journal of Virology, 84, 6177–6187.

    Article  PubMed  Google Scholar 

  • Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution, 9, 945–967.

    CAS  Google Scholar 

  • Shang, Q. X., Xiang, H. Y., Han, C. G., Li, D. W., & Yu, J. L. (2009). Distribution and molecular diversity of three cucurbit-infecting poleroviruses in China. Virus Research, 145, 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Tomassoli, L., & Meneghini, M. (2007). First report of Cucurbit aphid-borne yellows virus in Italy. Plant Pathology, 56, 720.

    Article  Google Scholar 

  • Wu, B., Blanchard-Letort, A., Liu, Y., Zhou, G., Wang, X., & Elena, S. F. (2011). Dynamics of molecular evolution and phylogeography of Barley yellow dwarf virus-PAV. PLoS ONE, 6(2), e16896.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, H. Y., Shang, Q. X., Han, C. G., Li, D. W., & Yu, J. L. (2008). First report on the occurrence of Cucurbit aphid-borne yellows virus on nine cucurbitaceous species in China. Plant Pathology, 57, 390.

    Google Scholar 

  • Yardιmcι, N., & Özgönen, H. (2007). First report of Cucurbit aphid-borne yellows virus in Turkey. Australian Plant Disease, 2, 59.

    Article  Google Scholar 

  • Ziegler-Graff, V., Brault, V., Mutterer, J. D., Simonis, M.-T., Herrbach, E., Guilley, H., et al. (1996). The coat protein of beet western yellows luteovirus is essential for systemic infection but the viral gene products P29 and P19 are dispensable for systemic infection and aphid transmission. Molecular Plant-Microbe Interactions, 9, 501–510.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by grant 11934/PI/09 (Fundación Séneca de la Región de Murcia, Spain). We thank Miguel A. Aranda and Verónica Truniger for critically reading the manuscript, and Mari Carmen Montesinos and Blanca Gosalvez for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman F. Omar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, A.F., Bagdady, N.A. Cucurbit aphid-borne yellows virus in Egypt. Phytoparasitica 40, 177–184 (2012). https://doi.org/10.1007/s12600-011-0212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0212-2

Keywords

Navigation