Skip to main content
Log in

Blood glucose monitoring in human subjects using optical coherence tomography

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The utility of optical coherence tomography signal amplitude for the measurement of glucose concentration has been analyzed in tissue phantom and in blood samples from human subjects. The diffusion equation based calculations as well as in-vivo OCT signal measurements confirm a cyclic correlation of signal intensity with glucose concentration and scatterer size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.A. Bazaev, S.V. Selishchev, Noninvasive methods for blood glucose measurement. Biomed. Eng. 41, 40–48 (2007)

    Article  Google Scholar 

  2. C.F. Amaral, M. Brischwein, B. Wolf, Multiparameter techniques for noninvasive measurement of blood glucose. Sensors and Actuators B 140, 12–16 (2009)

    Article  Google Scholar 

  3. B. Rabinovitch, W.F. March, R.L. Adams, Noninvasive glucose monitoring of the aqueous humor of the eye, Part 1, Measurement of very small optical rotations. Diabetes Care 5, 254–258 (1982)

    Article  Google Scholar 

  4. G.L. Cote, M.D. Fox, R.B. Northrop, Noninvasive optical polarimetric glucose sensing using a true phase measurement technique. IEEE Trans. Biomed. Eng. 39, 752–756 (1992)

    Article  Google Scholar 

  5. K.V. Larin, M. Motamedi, M.S. Eledrisi, R.O. Esenaliev, Noninvasive blood glucose monitoring with optical coherence tomography. Diabetes Care 25, 2263–2267 (2002)

    Article  Google Scholar 

  6. R. Poddar, S.R. Sharma, J.T. Andrews, P. Sen, Study of correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography. Curr. Sci. 95, 2 (2008)

    Google Scholar 

  7. J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, D.J.S. Birch, Fluorescence-based glucose sensors. Biosens. Bioelectron. 20, 2555–2565 (2005)

    Article  Google Scholar 

  8. J.R. McNichols, L.G. Cote, Optical glucose sensing in biological fluids: an overview. J. Biomed. Opt. 5, 5–16 (2000)

    Article  ADS  Google Scholar 

  9. S.F. Malin, T.L. Ruchiti, T.B. Blank, S.U. Thennadil, S.L. Monfre, Noninvasive prediction of glucose by near infrared diffuse reflectance spectroscopy. Clini. Chem. 45, 1651–1658 (1999)

    Google Scholar 

  10. V. Ashok, A. Nirmalkumar, N. Jeyashanthi, A novel method for blood glucose measurement by noninvasive technique using laser. International Journal of Biological and Life Sciences 6, 3 (2010)

    Google Scholar 

  11. V. V. Sapozhnikova, D. Prough, R. V. Kuranov, Influence of Osmolytes on in vivo Glucose Monitoring using OCT, 231, 1323–1332 (2006)

  12. L. Thrane, H.T. Yura, P.E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. J. Opt. Soc. Am. A 17, 3 (2000)

    Article  MathSciNet  Google Scholar 

  13. A. Ishimaru, Wave propagation and scattering in Random media (Academic, New York, 1978)

    Google Scholar 

  14. Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, Optical coherence-gated imaging of biological tissues. IEEE,Quantum Electronics 2, 4 (1996)

    Google Scholar 

  15. Y. Yang, Z. Zhang, X. Yang, J.H. Yeo, L. Jiang, D. Jiang, Blood cell counting and classification by nonflowing laser light scattering method. J. Biomed. Opt. 9, 995–1001 (2004)

    Article  ADS  Google Scholar 

  16. S.N. Thennadill, J.L. Rennert, B.J. Wenzel, K.H. Hazen, T.L. Ruchti, M.B. Block, Construction of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels. Diabetes Technol. Ther. 3, 357–365 (2001)

    Article  Google Scholar 

  17. D.N. Medearis, G.R. Minot, Studies on red blood cell diameter. J Clini Invest 229, 541–556 (1926)

    Google Scholar 

  18. R. Srinivasan, M. Singh, Laser Backscattering and Transillumination Imaging of Human Tissues and Their Equivalent Phantoms. IEEE Trans.on Biomed.Engin 50, 6 (2003)

    Google Scholar 

  19. J.C. Ramella-Roman, S.A. Prahl, S.L. Jacques, Three Monte Carlo Programs of polarized light transport into scattering media: part II, 13, 25 (2005)

  20. H.J.V. Staveren, C.J.M. Moes, J.V. Marle, S.A. Prahl, M.J.C.V. Gemert, Light scattering in Intralipid-10 percent in the wavelength range of 400–1100 nm. Appl. Opt. 30, 31 (1991)

    Google Scholar 

  21. B.F. Kennedy, S. Loitsch, R.A. McLaughlin, L. Scolaro, Paul Rigby, D.D. Sampson, Fibrin phantom for use in optical coherence tomography. J. Biomed. Opt. 15, 1083–1088 (2010)

    Article  Google Scholar 

  22. M.H. Kroll, Evaluating interference caused by Lipemia. Clin. Chem. 15, 11 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors thank Professor P. K. Sen for fruitful discussions. The financial support received from UGC, New Delhi and MPCST, Bhopal are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Thomas Andrews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanki, J., Sen, P., Andrews, J.T. et al. Blood glucose monitoring in human subjects using optical coherence tomography. J Opt 41, 127–133 (2012). https://doi.org/10.1007/s12596-012-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-012-0067-z

Keywords

Navigation