Skip to main content
Log in

Antimony transport mechanisms in resistant leishmania parasites

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Antimonial compounds have been used for more than a century in the treatment of the parasitic disease leishmaniasis. Although pentavalent antimonials are still first-line drugs in several developing countries, this class of drugs is no longer recommended in the Indian sub-continent because of the emergence of drug resistance. The precise mechanisms involved in the resistance of leishmania parasites to antimony are still subject to debate. It is now well documented that drug resistance in leishmania parasites is a multifactorial phenomenon involving multiple genes whose expression pattern synergistically leads to the resistance phenotype. The reduction of intracellular antimony accumulation is a frequent change observed in resistant leishmania cells; however, no comprehensive transport model has been presented so far to explain this change and its contribution to Leishmania resistance. The present review firstly covers the actual knowledge on the metabolism of antimonial drugs, the mechanisms of their transmembrane transport and intracellular processing in Leishmania. It further describes both the functional and molecular changes associated with Sb resistance in this organism. Possible transport models based on the actual knowledge are then presented, as well as their functional implications. Biophysical and pharmacological strategies are finally proposed for the precise identification of the transport pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

T(SH)2 :

trypanothione

GSH:

glutathione

AQP1:

aquaglyceroporin 1

MRPA:

multidrug resistance-associated protein A

MRP:

multidrug resistance-associated protein

MDR:

multidrug resistance

MAPK:

mitogen-activated protein kinase

TryR:

trypanothione reductase

ODC:

ornithine decarboxylase

γ-GCS:

γ-glutamylcysteine synthetase

HBTF :

terbinafine-associated encoding gene

PRT1:

pterine reductase

APX:

ascorbate-dependent peroxidase

G6PDH:

glucose-6-phosphate dehydrogenase

NT4:

nucleobase transporter

References

  • Adaui V, Schnorbusch K, Zimic M, Gutierrez A, Decuypere S, Vanaerschot M, De Doncker S, Maes I, Llanos-Cuentas A, Chappuis F, Arevalo J, Dujardin JC (2011) Comparison of gene expression patterns among Leishmania braziliensis clinical isolates showing a different in vitro susceptibility to pentavalent antimony. Parasitology 138(2):183–193. doi:10.1017/S0031182010001095

    CAS  PubMed  Google Scholar 

  • Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, Team WHOLC (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7(5):e35671. doi:10.1371/journal.pone.0035671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anacleto C, Abdo MC, Ferreira AV, Murta SM, Romanha AJ, Fernandes AP, Moreira ES (2003) Structural and functional analysis of an amplification containing a PGPA gene in a glucantime-resistant Leishmania (Viannia) guyanensis cell line. Parasitol Res 90(2):110–118. doi:10.1007/s00436-002-0798-x

    PubMed  Google Scholar 

  • Berg M, Vanaerschot M, Jankevics A, Cuypers B, Maes I, Mukherjee S, Khanal B, Rijal S, Roy S, Opperdoes F, Breitling R, Dujardin JC (2013) Metabolic adaptations of Leishmania donovani in relation to differentiation, drug resistance, and drug pressure. Mol Microbiol. doi:10.1111/mmi.12374

    PubMed  Google Scholar 

  • Berman JD (1997) Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24(4):684–703. doi:10.1093/clind/24.4.684

    CAS  PubMed  Google Scholar 

  • Beverley SM (1991) Gene amplification in Leishmania. Annu Rev Microbiol 45:417–444. doi:10.1146/annurev.mi.45.100191.002221

    CAS  PubMed  Google Scholar 

  • Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R (2011) Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol 179(2):91–99. doi:10.1016/j.molbiopara.2011.06.004

    CAS  PubMed  Google Scholar 

  • Brochu C, Haimeur A, Ouellette M (2004) The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite leishmania. Cell Stress Chaperones 9(3):294–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brochu C, Wang J, Roy G, Messier N, Wang XY, Saravia NG, Ouellette M (2003) Antimony uptake systems in the protozoan parasite leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother 47(10):3073–3079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callahan HL, Roberts WL, Rainey PM, Beverley SM (1994) The PGPA gene of Leishmania major mediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Mol Biochem Parasitol 68(1):145–149. doi:10.1016/0166-6851(94)00154-5

    CAS  PubMed  Google Scholar 

  • Carrio J, de Colmenares M, Riera C, Gallego M, Arboix M, Portus M (2000) Leishmania infantum: stage-specific activity of pentavalent antimony related with the assay conditions. Exp Parasitol 95(3):209–214. doi:10.1006/expr.2000.4537

    CAS  PubMed  Google Scholar 

  • Castanys-Munoz E, Alder-Baerens N, Pomorski T, Gamarro F, Castanys S (2007) A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol 64(5):1141–1153. doi:10.1111/j.1365-2958.2007.05653.x

    CAS  PubMed  Google Scholar 

  • Castanys-Munoz E, Perez-Victoria JM, Gamarro F, Castanys S (2008) Characterization of an ABCG-like transporter from the protozoan parasite leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother 52(10):3573–3579. doi:10.1128/AAC.00587-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156(2):93–101. doi:10.1016/j.molbiopara.2007.07.007

    CAS  PubMed  Google Scholar 

  • Coelho AC, Beverley SM, Cotrim PC (2003) Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol 130(2):83–90. doi:10.1016/S0166-6851(03)00162-2

    CAS  PubMed  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126. doi:10.1128/CMR.19.1.111-126.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das M, Saudagar P, Sundar S, Dubey VK (2013) Miltefosine-unresponsive Leishmania donovani has a greater ability than miltefosine-responsive L. donovani to resist reactive oxygen species. FEBS J 280(19):4807–4815. doi:10.1111/febs.12449

    CAS  PubMed  Google Scholar 

  • Decuypere S, Rijal S, Yardley V, De Doncker S, Laurent T, Khanal B, Chappuis F, Dujardin JC (2005) Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother 49(11):4616–4621. doi:10.1128/AAC.49.11.4616-4621.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Decuypere S, Vanaerschot M, Brunker K, Imamura H, Muller S, Khanal B, Rijal S, Dujardin JC, Coombs GH (2012) Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Negl Trop Dis 6(2):e1514. doi:10.1371/journal.pntd.0001514

    PubMed Central  PubMed  Google Scholar 

  • Demicheli C, Frezard F, Mangrum JB, Farrell NP (2008) Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs. Chem Commun (Camb) 39:4828–4830. doi:10.1039/b809186b

    Google Scholar 

  • Denton H, McGregor JC, Coombs GH (2004) Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J 381(Pt 2):405–412. doi:10.1042/BJ20040283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dey S, Papadopoulou B, Haimeur A, Roy G, Grondin K, Dou D, Rosen BP, Ouellette M (1994) High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol 67(1):49–57. doi:10.1016/0166-6851(94)90095-7

    CAS  PubMed  Google Scholar 

  • Dhillon GP, Sharma SN, Nair B (2008) Kala-azar elimination programme in India. J Indian Med Assoc 106 (10):664, 666–668

    Google Scholar 

  • do Monte-Neto RL, Coelho AC, Raymond F, Legare D, Corbeil J, Melo MN, Frezard F, Ouellette M (2011) Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl Trop Dis 5(5):e1167. doi:10.1371/journal.pntd.0001167

    PubMed Central  PubMed  Google Scholar 

  • Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cottom JA, Hilley JD, Sd D, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schönian G, Stark O, Sundar S, Vanaerschot M, Hertz-Fowler C, Dujardin JC, Berriman M (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21(12):13. doi:10.1101/gr.123430.111

    Google Scholar 

  • El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, Saravia NG, Papadopoulou B, Legare D, Ouellette M (2005) Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother 49(5):1988–1993. doi:10.1128/AAC.49.5.1988-1993.2005

    PubMed Central  PubMed  Google Scholar 

  • Ephros M, Bitnun A, Shaked P, Waldman E, Zilberstein D (1999) Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrob Agents Chemother 43(2):278–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Essodaigui M, Frezard F, Moreira ES, Dagger F, Garnier-Suillerot A (1999) Energy-dependent efflux from leishmania promastigotes of substrates of the mammalian multidrug resistance pumps. Mol Biochem Parasitol 100(1):73–84. doi:10.1016/S0166-6851(99)00036-5

    CAS  PubMed  Google Scholar 

  • Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729. doi:10.1146/annurev.mi.46.100192.003403

    CAS  PubMed  Google Scholar 

  • Ferreira CS, Martins PS, Demicheli C, Brochu C, Ouellette M, Frezard F (2003) Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals 16(3):441–446

    CAS  Google Scholar 

  • Frezard F, Demicheli C, Ferreira CS, Costa MA (2001) Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother 45(3):913–916. doi:10.1128/AAC.45.3.913-916.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frezard F, Demicheli C, Ribeiro RR (2009) Pentavalent antimonials: new perspectives for old drugs. Molecules 14(7):2317–2336. doi:10.3390/molecules14072317

    CAS  PubMed  Google Scholar 

  • Frezard F, Silva H, Pimenta AM, Farrell N, Demicheli C (2012) Greater binding affinity of trivalent antimony to a CCCH zinc finger domain compared to a CCHC domain of kinetoplastid proteins. Metallomics 4(5):433–440. doi:10.1039/c2mt00176d

    CAS  PubMed  Google Scholar 

  • Garcia-Hernandez R, Manzano JI, Castanys S, Gamarro F (2012) Leishmania donovani develops resistance to drug combinations. PLoS Negl Trop Dis 6(12):e1974. doi:10.1371/journal.pntd.0001974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Genest PA, Haimeur A, Legare D, Sereno D, Roy G, Messier N, Papadopoulou B, Ouellette M (2008) A protein of the leucine-rich repeats (LRRs) superfamily is implicated in antimony resistance in Leishmania infantum amastigotes. Mol Biochem Parasitol 158(1):95–99. doi:10.1016/j.molbiopara.2007.11.008

    CAS  PubMed  Google Scholar 

  • Ghosh J, Bose M, Roy S, Bhattacharyya SN (2013) Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe 13(3):277–288. doi:10.1016/j.chom.2013.02.005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glaser TA, Baatz JE, Kreishman GP, Mukkada AJ (1988) pH homeostasis in Leishmania donovani amastigotes and promastigotes. Proc Natl Acad Sci U S A 85(20):7602–7606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodwin LG, Page JE (1943) A study of the excretion of organic antimonials using a polarographic procedure. Biochem J 37(2):198–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279(30):31010–31017. doi:10.1074/jbc.M403959200

    CAS  PubMed  Google Scholar 

  • Grondin K, Haimeur A, Mukhopadhyay R, Rosen BP, Ouellette M (1997) Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J 16(11):3057–3065. doi:10.1093/emboj/16.11.3057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grondin K, Roy G, Ouellette M (1996) Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae. Mol Cell Biol 16(7):3587–3595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, Wasunna MK, Bryceson AD (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2(8):494–501. doi:10.1016/S1473-3099(02)00347-X

    PubMed  Google Scholar 

  • Guimond C, Trudel N, Brochu C, Marquis N, Fadili AE, Peytavi R, Briand G, Richard D, Messier N, Papadopoulou B, Corbeil J, Bergeron MG, Legare D, Ouellette M (2003) Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res 31(20):5886–5896. doi:10.1093/nar/gkg806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haimeur A, Brochu C, Genest P, Papadopoulou B, Ouellette M (2000) Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol 108(1):131–135. doi:10.1016/S0166-6851(00)00187-0

    CAS  PubMed  Google Scholar 

  • Haimeur A, Guimond C, Pilote S, Mukhopadhyay R, Rosen BP, Poulin R, Ouellette M (1999) Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol Microbiol 34(4):726–735. doi:10.1046/j.1365-2958.1999.01634.x

    CAS  PubMed  Google Scholar 

  • Hansen C, Hansen EW, Hansen HR, Gammelgaard B, Sturup S (2011) Reduction of Sb(V) in a human macrophage cell line measured by HPLC-ICP-MS. Biol Trace Elem Res 144(1–3):234–243. doi:10.1007/s12011-011-9079-9

    CAS  PubMed  Google Scholar 

  • Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105(4):1198–1203. doi:10.1073/pnas.0707662104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Saffari M, Raoofian R, Hajjaran H, Hadighi R, Khamesipour A, Rezaie S, Abedkhojasteh H, Heidari M (2013) Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp Parasitol 135(2):344–349. doi:10.1016/j.exppara.2013.07.018

    CAS  PubMed  Google Scholar 

  • Kumar D, Singh R, Bhandari V, Kulshrestha A, Negi NS, Salotra P (2012) Biomarkers of antimony resistance: need for expression analysis of multiple genes to distinguish resistance phenotype in clinical isolates of Leishmania donovani. Parasitol Res 111(1):223–230. doi:10.1007/s00436-012-2823-z

    PubMed  Google Scholar 

  • Lai WS, Kennington EA, Blackshear PJ (2002) Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 277(11):9606–9613. doi:10.1074/jbc.M110395200

    CAS  PubMed  Google Scholar 

  • Legare D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M (2001) The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 276(28):26301–26307. doi:10.1074/jbc.M102351200

    CAS  PubMed  Google Scholar 

  • Leprohon P, Legare D, Ouellette M (2009a) Intracellular localization of the ABCC proteins of Leishmania and their role in resistance to antimonials. Antimicrob Agents Chemother 53(6):2646–2649. doi:10.1128/AAC.01474-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leprohon P, Legare D, Raymond F, Madore E, Hardiman G, Corbeil J, Ouellette M (2009b) Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res 37(5):1387–1399. doi:10.1093/nar/gkn1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YC, Hsu JY, Shu JH, Chi Y, Chiang SC, Lee ST (2008) Two distinct arsenite-resistant variants of Leishmania amazonensis take different routes to achieve resistance as revealed by comparative transcriptomics. Mol Biochem Parasitol 162(1):16–31. doi:10.1016/j.molbiopara.2008.06.015

    CAS  PubMed  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99(9):6053–6058. doi:10.1073/pnas.092131899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucumi A, Robledo S, Gama V, Saravia NG (1998) Sensitivity of Leishmania (Viannia) panamensis to pentavalent antimony is correlated with the formation of cleavable DNA-protein complexes. Antimicrob Agents Chemother 42(8):1990–1995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machuca C, Rodriguez A, Herrera M, Silva S, Ponte-Sucre A (2006) Leishmania amazonensis: Metabolic adaptations induced by resistance to an ABC transporter blocker. Exp Parasitol 114(1):1–9. doi:10.1016/j.exppara.2006.02.008

    CAS  PubMed  Google Scholar 

  • Maharjan M, Singh S, Chatterjee M, Madhubala R (2008) Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am J Trop Med Hyg 79(1):69–75

    CAS  PubMed  Google Scholar 

  • Mandal G, Sharma M, Kruse M, Sander-Juelch C, Munro LA, Wang Y, Vilg JV, Tamas MJ, Bhattacharjee H, Wiese M, Mukhopadhyay R (2012) Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase. Mol Microbiol 85(6):1204–1218. doi:10.1111/j.1365-2958.2012.08169.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandal G, Wyllie S, Singh N, Sundar S, Fairlamb AH, Chatterjee M (2007) Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology 134(Pt 12):1679–1687. doi:10.1017/S0031182007003150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manzano JI, Garcia-Hernandez R, Castanys S, Gamarro F (2013) A new ABC half-transporter in Leishmania is involved in resistance to antimony. Antimicrob Agents Chemother 57(8):3719–3730. doi:10.1128/AAC.00211-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marchini JF, Cruz AK, Beverley SM, Tosi LR (2003) The H region HTBF gene mediates terbinafine resistance in Leishmania major. Mol Biochem Parasitol 131(1):77–81. doi:10.1016/S0166-6851(03)00174-9

    CAS  PubMed  Google Scholar 

  • Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M (2005) Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 57(6):1690–1699. doi:10.1111/j.1365-2958.2005.04782.x

    CAS  PubMed  Google Scholar 

  • Matlashewski G, Arana B, Kroeger A, Battacharya S, Sundar S, Das P, Sinha PK, Rijal S, Mondal D, Zilberstein D, Alvar J (2011) Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis 11(4):322–325. doi:10.1016/S1473-3099(10)70320-0

    PubMed  Google Scholar 

  • Matrangolo FS, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, Santiago AS, Pirovani CP, Silva-Pereira RA, Murta SM (2013) Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol 190(2):63–75. doi:10.1016/j.molbiopara.2013.06.006

    PubMed  Google Scholar 

  • Meheus F, Balasegaram M, Olliaro P, Sundar S, Rijal S, Faiz MA, Boelaert M (2010) Cost-effectiveness analysis of combination therapies for visceral leishmaniasis in the Indian subcontinent. PLoS Negl Trop Dis 4(9):e818. doi:10.1371/journal.pntd.0000818

  • Messaritakis I, Christodoulou V, Mazeris A, Koutala E, Vlahou A, Papadogiorgaki S, Antoniou M (2013) Drug resistance in natural isolates of Leishmania donovani s.l. promastigotes is dependent of Pgp170 expression. PLoS ONE 8(6):e65467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mittal MK, Rai S, Ashutosh R, Gupta S, Sundar S, Goyal N (2007) Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg 76(4):681–688

    CAS  PubMed  Google Scholar 

  • Mookerjee JB, Mookerjee A, Banerjee R, Saha M, Singh S, Naskar K, Tripathy G, Sinha PK, Pandey K, Sundar S, Bimal S, Das PK, Choudhuri SK, Roy S (2008) Inhibition of ABC transporters abolishes antimony resistance in Leishmania Infection. Antimicrob Agents Chemother 52(3):1080–1093

    PubMed Central  PubMed  Google Scholar 

  • Moreira DS, Monte-Neto RL, Andrade JM, Santi AMM, Reis PG, Frezard F, Murta SMF (2013) Molecular characterization of the MRPA transporter and antimony uptake in four New World Leishmania spp. susceptible and resistant to antimony. Int J Parasitol Drugs Drug Resist 3:143–153. doi:10.1016/j.ijpddr.2013.08.001

    PubMed Central  PubMed  Google Scholar 

  • Mukherjee A, Boisvert S, Monte-Neto RL, Coelho AC, Raymond F, Mukhopadhyay R, Corbeil J, Ouellette M (2013) Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol 88(1):189–202. doi:10.1111/mmi.12178

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Padmanabhan PK, Singh S, Roy G, Girard I, Chatterjee M, Ouellette M, Madhubala R (2007) Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother 59(2):204–211. doi:10.1093/jac/dkl494

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M, Rosen BP (1996) Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci U S A 93(19):10383–10387. doi:10.1073/pnas.1222579110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muniz-Junqueira MI, de Paula-Coelho VN (2008) Meglumine antimonate directly increases phagocytosis, superoxide anion and TNF-alpha production, but only via TNF-alpha it indirectly increases nitric oxide production by phagocytes of healthy individuals, in vitro. Int Immunopharmacol 8(12):1633–1638. doi:10.1016/j.intimp.2008.07.011

    CAS  PubMed  Google Scholar 

  • Newby ZE, O'Connell J 3rd, Robles-Colmenares Y, Khademi S, Miercke LJ, Stroud RM (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol 15(6):619–625. doi:10.1038/nsmb.1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ouellette M, Borst P (1991) Drug resistance and P-glycoprotein gene amplification in the protozoan parasite leishmania. Res Microbiol 142(6):737–746. doi:10.1016/0923-2508(91)90089-S

    CAS  PubMed  Google Scholar 

  • Ouellette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7(4–5):257–266. doi:10.1016/j.drup.2004.07.002

    CAS  PubMed  Google Scholar 

  • Papadopoulou B, Roy G, Dey S, Rosen BP, Ouellette M (1994) Contribution of the Leishmania P-glycoprotein-related gene ltpgpA to oxyanion resistance. J Biol Chem 269(16):11980–11986

    CAS  PubMed  Google Scholar 

  • Pathak MK, Yi T (2001) Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J Immunol 167(6):3391–3397

    CAS  PubMed  Google Scholar 

  • Perez-Victoria JM, Perez-Victoria FJ, Parodi-Talice A, Jimenez IA, Ravelo AG, Castanys S, Gamarro F (2001) Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother 45(9):2468–2474. doi:10.1128/AAC.45.9.2468-2474.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry MR, Wyllie S, Prajapati VK, Feldmann J, Sundar S, Boelaert M, Fairlamb AH (2011) Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent? PLoS Negl Trop Dis 5(9):e1227. doi:10.1371/journal.pntd.0001227

    PubMed Central  PubMed  Google Scholar 

  • Phongphanphanee S, Yoshida N, Hirata F (2010) Molecular selectivity in aquaporin channels studied by the 3D-RISM theory. J Phys Chem B 114(23):7967–7973. doi:10.1021/jp101936y

    CAS  PubMed  Google Scholar 

  • Purkait B, Kumar A, Nandi N, Sardar AH, Das S, Kumar S, Pandey K, Ravidas V, Kumar M, De T, Singh D, Das P (2012) Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 56(2):1031–1041. doi:10.1128/AAC.00030-11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rai S, Bhaskar GSK, Nath Dwivedi U, Sundar S, Goyal N (2013) Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS ONE 8(9):e74862. doi:10.1371/journal.pone.0074862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salaun P, Frezard F (2013) Unexpectedly high levels of antimony (III) in the pentavalent antimonial drug Glucantime: insights from a new voltammetric approach. Anal Bioanal Chem 405(15):5201–5214. doi:10.1007/s00216-013-6947-5

    PubMed  Google Scholar 

  • Sereno D, Cavaleyra M, Zemzoumi K, Maquaire S, Ouaissi A, Lemesre JL (1998) Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 42(12):3097–3102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D (2001) Novel Intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276(6):3971–3976. doi:10.1074/jbc.M005423200

    CAS  PubMed  Google Scholar 

  • Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9(1):105–127. doi:10.2217/14622416.9.1.105

    CAS  PubMed  Google Scholar 

  • Silverman JM, Clos J, de’Oliveira CC, Shirvani O, Fang Y, Wang C, Foster LJ, Reiner NE (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123(Pt 6):842–852. doi:10.1242/jcs.056465

    CAS  PubMed  Google Scholar 

  • Singh R, Kumar D, Duncan RC, Nakhasi HL, Salotra P (2010) Overexpression of histone H2A modulates drug susceptibility in leishmania parasites. Int J Antimicrob Agents 36(1):50–57. doi:10.1016/j.ijantimicag.2010.03.012

    CAS  PubMed  Google Scholar 

  • Sun H, Yan SC, Cheng WS (2000) Interaction of antimony tartrate with the tripeptide glutathione implication for its mode of action. Eur J Biochem 267(17):5450–5457. doi:10.1046/j.1432-1327.2000.01605.x

    CAS  PubMed  Google Scholar 

  • Sundar S, Rai M, Chakravarty J, Agarwal D, Agrawal N, Vaillant M, Olliaro P, Murray HW (2008) New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin Infect Dis 47(8):1000–1006. doi:10.1086/591972

    CAS  PubMed  Google Scholar 

  • Sundar S, Singh A, Rai M, Prajapati VK, Singh AK, Ostyn B, Boelaert M, Dujardin JC, Chakravarty J (2012) Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 55(4):543–550. doi:10.1093/cid/cis474

    CAS  PubMed  Google Scholar 

  • Sundar S, Sinha PK, Verma DK, Kumar N, Alam S, Pandey K, Kumari P, Ravidas V, Chakravarty J, Verma N, Berman J, Ghalib H, Arana B (2011) Ambisome plus miltefosine for Indian patients with kala-azar. Trans R Soc Trop Med Hyg 105(2):115–117. doi:10.1016/j.trstmh.2010.10.008

    CAS  PubMed  Google Scholar 

  • Torres DC, Adaui V, Ribeiro-Alves M, Romero GA, Arevalo J, Cupolillo E, Dujardin JC (2010) Targeted gene expression profiling in Leishmania braziliensis and Leishmania guyanensis parasites isolated from Brazilian patients with different antimonial treatment outcomes. Infect Genet Evol 10(6):727–733. doi:10.1016/j.meegid.2010.05.006

    CAS  PubMed  Google Scholar 

  • Ubeda JM, Legare D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B, Ouellette M (2008) Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 9(7):R115. doi:10.1186/gb-2008-9-7-r115

    PubMed Central  PubMed  Google Scholar 

  • Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M (2007) A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 6(1):88–101. doi:10.1074/mcp.M600319-MCP200

    CAS  PubMed  Google Scholar 

  • Vianna G (1912) Tratamento da Leishmaniose tegumentar por injeções intravenosas de tártaro emético In: 7 Congresso Brasileiro de Medicina Tropical de São Paulo, São Paulo, Brazil, pp 426–428

  • Walker J, Gongora R, Vasquez JJ, Drummelsmith J, Burchmore R, Roy G, Ouellette M, Gomez MA, Saravia NG (2012) Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol 183(2):166–176. doi:10.1016/j.molbiopara.2012.03.002

    CAS  PubMed  Google Scholar 

  • Webb JR, McMaster WR (1993) Molecular cloning and expression of a Leishmania major gene encoding a single-stranded DNA-binding protein containing nine "CCHC" zinc finger motifs. J Biol Chem 268(19):13994–14002

    CAS  PubMed  Google Scholar 

  • Wyllie S, Cunningham ML, Fairlamb AH (2004) Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem 279(38):39925–39932. doi:10.1074/jbc.M405635200

    CAS  PubMed  Google Scholar 

  • Wyllie S, Fairlamb AH (2006) Differential toxicity of antimonial compounds and their effects on glutathione homeostasis in a human leukaemia monocyte cell line. Biochem Pharmacol 71(3):257–267. doi:10.1016/j.bcp.2005.10.043

    CAS  PubMed  Google Scholar 

  • Wyllie S, Mandal G, Singh N, Sundar S, Fairlamb AH, Chatterjee M (2010) Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol Biochem Parasitol 173(2):162–164. doi:10.1016/j.molbiopara.2010.05.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyllie S, Vickers TJ, Fairlamb AH (2008) Roles of trypanothione S-transferase and tryparedoxin peroxidase in resistance to antimonials. Antimicrob Agents Chemother 52(4):1359–1365. doi:10.1128/AAC.01563-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan S, Li F, Ding K, Sun H (2003) Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J Biol Inorg Chem 8(6):689–697. doi:10.1007/s00775-003-0468-1

    CAS  PubMed  Google Scholar 

  • Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem 279(36):37445–37451. doi:10.1074/jbc.M404383200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Brazilian agencies, “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (303046/2009 and studentship), “Fundação de Amparo à Pesquisa do Estado de Minas Gerais” (PPM-00382-11; REDE 40/11; CBB-APQ-01123-09) and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (2447/2009 and studentship) for financial support. R.M.N. is supported by a Government of Canada DFAIT post-doctoral research fellowship. F.F. is recipient of a research fellowship from CNPq. The authors declare that they have no conflict of interest.

Conflict of Interest

The authors declare that they have no conflict of Interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Frézard.

Additional information

Special Issue Advances in Biophysics in Latin America

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frézard, F., Monte-Neto, R. & Reis, P.G. Antimony transport mechanisms in resistant leishmania parasites. Biophys Rev 6, 119–132 (2014). https://doi.org/10.1007/s12551-013-0134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-013-0134-y

Keywords

Navigation