Skip to main content

Advertisement

Log in

Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Virus infection alters the expression of several host genes involved in various cellular and biological processes in plants. Most of the studies performed till now have mainly focused on genes which are up-regulated and later projected them as probable stress tolerant/susceptible genes. Nevertheless, genes which are down-regulated during plant-virus interaction could also play a critical role on disease development as well as in combating the virus infection. Hence, to identify such down-regulated genes and pathway, we performed reverse suppression subtractive hybridization in Capsicum annuum var. Punjab Lal following Chilli leaf curl virus (ChiLCV) infection. The screening and further processing suggested that majority of the genes (approximately 35% ESTs) showed homology with the genes encoding chloroplast proteins and 16% genes involved in the biotic and abiotic stress response. Additionally, we identified several genes, functionally known to be involved in metabolic processes, protein synthesis and degradation, ribosomal proteins, energy production, DNA replication and transcription, and transporters. We also found 3% transcripts which did not show homology with any known genes. The redundancy analysis revealed the maximum percentage of chlorophyll a-b binding protein (15/96) and auxin-binding proteins (13/96). We developed a protein interactome network to characterise the relationships between proteins and pathway involved during the ChiLCV infection. We identified that the most of the interaction occurs either among the chloroplast proteins (Arabidopsis proteins interactive map) or biotic and abiotic stress responsive proteins (Solanum lycopersicum interactome). Taken together, our study provides the first transcriptome and protein interactome of the down-regulated genes during C. annuum-ChiLCV interaction. These resources could be exploited in deciphering the steps involved in the process of virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama Y, Shirai Y, Ito K (1994) Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions. J Biol Chem 269:5225–5229

    CAS  PubMed  Google Scholar 

  • Alazem M, Lin NS (2015) Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol 16:529–540

    Article  CAS  PubMed  Google Scholar 

  • Alazem M, He MH, Moffett P, Lin NS (2017) Abscisic acid induces resistance against bamboo mosaic virus through Argonaute 2 and 3. Plant Physiol 174:339–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allie F, Pierce EJ, Okoniewski MJ, Rey C (2014) Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genom 15:1006

    Article  CAS  Google Scholar 

  • Arguello-Astorga G, Lopez-Ochoa L, Kong LJ, Orozco BM, Settlage SB, Hanley-Bowdoin L (2004) A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J Virol 78:4817–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armbruster U et al (2013) Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25:2661–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergantino E, Dainese P, Cerovic Z, Sechi S, Bassi R (1995) A post-translational modification of the photosystem II subunit CP29 protects maize from cold stress. J Biol Chem 270:8474–8481

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Chakraborty S (2018) Chloroplast: the Trojan horse in plant-virus interaction. Mol Plant Pathol 19:504–518

    Article  PubMed  Google Scholar 

  • Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, Chakraborty S (2015) A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot 66:5881–5895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming AJ (2008) Conditional repression of AUXIN BINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20:2746–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay B, Singh AK, Yadav T, Fauquet CM, Sarin NB, Chakraborty S (2008) Infectivity of the cloned components of a begomovirus: DNA beta complex causing chilli leaf curl disease in India. Arch Virol 153:533–539

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yang Z (2014) Novel ABP1-TMK auxin sensing system controls ROP GTPase-mediated interdigitated cell expansion in Arabidopsis. Small GTPases 5:29711

    Article  Google Scholar 

  • Chen YE, Zhao ZY, Zhang HY, Zeng XY, Yuan S (2013) The significance of CP29 reversible phosphorylation in thylakoids of higher plants under environmental stresses. J Exp Bot 64:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Collet JF, Messens J (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 13:1205–1216

    Article  CAS  PubMed  Google Scholar 

  • David KM, Couch D, Braun N, Brown S, Grosclaude J, Perrot-Rechenmann C (2007) The auxin-binding protein 1 is essential for the control of cell cycle. Plant J 50:197–206

    Article  CAS  PubMed  Google Scholar 

  • De Storme N, Geelen D (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci 5:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci 98(23):13454–13459

    Article  CAS  PubMed  Google Scholar 

  • Dhanraj KS, Seth ML (1968) Enation in Capsicum annuum L (Chili) caused by a new strain of leaf curl virus. Ind J Horticult 25:70–71

    Google Scholar 

  • Gaoa Y, Zhanga Y, Zhanga D, Daia X, Estellea M, Zhaoa Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112:2275–2280

    Article  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson N, Kokke BP, Harndahl U, Silow M, Bechtold U, Poghosyan Z, Murphy D, Boelens WC, Sundby C (2002) A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant J 29:545–553

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Hima Kumari P, Sunita MS, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kumar S, Singh M, Singh AK, Rai M (2006) Identification of host plant resistance to Pepper leaf curl virus in chilli (Capsicum species). Sci Horticult 110:359–361

    Article  CAS  Google Scholar 

  • Kumar RV, Singh AK, Singh AK, Yadav T, Basu S, Kushwaha N, Chattopadhyay B, Chakraborty S (2015) Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J Gen Virol 96:3143–3158

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha N, Sahu PP, Prasad M, Chakraborty S (2015) Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol 99:4757–4770

    Article  CAS  PubMed  Google Scholar 

  • Leng P et al (2017) Auxin Binding Protein 1 Reinforces Resistance to Sugarcane Mosaic Virus in Maize. Mol Plant 10:1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Li S et al (2015) Thioredoxin 2 Is a Novel E2-Interacting Protein That Inhibits the Replication of Classical Swine Fever Virus. J Virol 89:8510–8524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Chung HY, Lacatus G, Baliji S, Ruan J, Sunter G (2014) Altered expression of Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein. BMC Plant Biol 14:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q et al (2017) An Atypical Thioredoxin Imparts Early Resistance to Sugarcane Mosaic Virus in Maize. Mol Plant 10:483–497

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Liu J, Lin C, Wang H, Jiang Y, Wang J, Yang P, He F (2010) Peroxiredoxin 2: a potential biomarker for early diagnosis of hepatitis B virus related liver fibrosis identified by proteomic analysis of the plasma. BMC Gastroenterol 10:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra MD, Raychaudhuri SP, Jha A (1963) Virus causing leaf curlof chilli (Capsicum annuum L.) Indian. J Microbiol 3:73–76

    Google Scholar 

  • Mochizuki T, Ogata Y, Hirata Y, Ohki ST (2014) Quantitative transcriptional changes associated with chlorosis severity in mosaic leaves of tobacco plants infected with Cucumber mosaic virus. Mol Plant Pathol 15(3):242–254

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Yasuhara T, Fujiki Y, Ohashi A (1995) Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol Cell Biol 15:4441–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  PubMed  Google Scholar 

  • Ostersetzer O, Adam Z (1997) Light-stimulated degradation of an unassembled Rieske FeS protein by a thylakoid-bound protease: the possible role of the FtsH protease. Plant Cell 9:957–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padhi GK, Maity L, Chattopadhyay A, Samanta A (2017) Population dynamics of whitefly (Bemisia tabaci Genn) in chilli and screening of genotypes against chilli leaf curl virus. J Entomol Zool Stud 5(5):104–107

    Google Scholar 

  • Park J, Lee HJ, Cheon CI, Kim SH, Hur YS, Auh CK, Im KH, Yun DJ, Lee S, Davis KR (2011) The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS ONE 6:e20054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross SJ, Findlay VJ, Malakasi P, Morgan BA (2000) Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol Biol Cell 11:2631–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouhier N et al (2004) Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol 134:1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PP, Rai NK, Chakraborty S, Singh M, Chandrappa PH, Ramesh B, Chattopadhyay D, Prasad M (2010) Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol 11:531–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh H, Terauchi R (2002) Virus-induced silencing of FtsH gene in Nicotiana benthmiana causes a striking bleached leaf phenotype. Genes Genet Syst 77:335–340

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Kleine-Vehn J (2011) AUXIN BINDING PROTEIN1: the outsider. Plant Cell 23:2033–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senanayake DMJB, Mandal B, Lodha S, Varma A (2007) First reportof Chilli leaf curl virus affecting chilli in India. Plant Pathol 56:343

    Article  Google Scholar 

  • Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y (2000) Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917–932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ (2003) FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell 15:2152–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ (2008) Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant 1:75–83

    Article  CAS  PubMed  Google Scholar 

  • Stanley J, Markham PG, Callis RJ, Pinner MS (1986) The nucleotide sequence of an infectious clone of the geminivirus beet curly top virus. EMBO J 5:1761–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summer EJ, Cline K (1999) Red bell pepper chromoplasts exhibit in vitro import competency and membrane targeting of passenger proteins from the thylakoidal sec and DeltapH pathways but not the chloroplast signal recognition particle pathway. Plant Physiol 119:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X, Dong H (2010) An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant Microbe Interact 23:1470–1485

    Article  CAS  PubMed  Google Scholar 

  • Thain SC, Murtas G, Lynn JR, McGrath RB, Millar AJ (2002) The circadian clock that controls gene expression in Arabidopsis is tissue specific. Plant Physiol 130:102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikkanen M, Aro EM (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96:14147–14152

    Article  CAS  PubMed  Google Scholar 

  • Wagner R, Aigner H, Funk C (2012) FtsH proteases located in the plant chloroplast. Physiol Plant 145(1):203–214

    Article  CAS  PubMed  Google Scholar 

  • Watanabe A, Yoneda M, Ikeda F, Sugai A, Sato H, Kai C (2011) Peroxiredoxin 1 is required for efficient transcription and replication of measles virus. J Virol 85:2247–2253

    Article  CAS  PubMed  Google Scholar 

  • Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW (2002) Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J 21:2877–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T et al (2014) Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343:1025–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV, Horton P (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry 42:608–613

    Article  CAS  PubMed  Google Scholar 

  • Yang DH, Webster J, Adam Z, Lindahl M, Andersson B (1998) Induction of acclimative proteolysis of the light-harvesting chlorophyll a-b protein of photosystem II in response to elevated light intensities. Plant Physiol 118:827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Wang B, Li H, Liu R, Kalia RK, Zhu JK, Chinnusamy V (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci USA 109:18198–18203

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was provided by University Grants Commission [Grant Nos. UGC-RNW (SLS/SC/2016, UGC-SAP (SLS/SAP/SC/2016)], Ministry of Science and Technology [Grant No. DST-FIST (JNU/SLS/SC/FIST-16)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Chakrabroty.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, N.K., Mansi, Sahu, P.P. et al. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. Physiol Mol Biol Plants 25, 1185–1196 (2019). https://doi.org/10.1007/s12298-019-00693-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00693-1

Keywords

Navigation