Skip to main content
Log in

Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer’s disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-d-glucose, 1,2,3,6-tetra-O-galloyl-β-d-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-d-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  PubMed  Google Scholar 

  • Bhakta HK, Park CH, Yokozawa T, Min BS, Jung HA, Choi JS (2016) Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni Fructus as cholinesterase and β-secretase 1 inhibitors. Arch Pharm Res 39:794–805

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Zhang Y, Cong XD, Cai H, Cai BC (2009) Research progress on the chemical constituents and pharmacological activities of Fructus Corni. J Chin Pharm Sci 18:208–213

    CAS  Google Scholar 

  • Chen CC, Hsu CY, Chen CY, Liu HK (2008) Fructus Corni suppresses hepatic gluconeogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death. J Ethnopharmacol 117:483–490

    Article  PubMed  Google Scholar 

  • Choi WH, Chu JP, Jiang MH, Baek SH, Park HD (2011a) Effects of fraction obtained from Korean Corni Fructus extracts causing anti-proliferation and p53-dependent apoptosis in A549 lung cancer cells. Nutr Cancer 63:121–129

    PubMed  Google Scholar 

  • Choi YH, Jin GY, Li GZ, Yan GH (2011b) Cornuside suppresses lipopolysaccharideinduced inflammatory mediators by inhibiting nuclear factor-kappa B activation in RAW 264.7 macrophages. Biol Pharm Bull 34:959–966

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Islam MN, Ali MY, Kim YM, Park HJ, Sohn HS, Jung HA (2014) The effect of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch Pharm Res 37:1354–1363

    Article  CAS  PubMed  Google Scholar 

  • De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352

    Article  CAS  PubMed  Google Scholar 

  • Edraki N, Firuzi O, Foroumadi A, Miri R, Madadkar-Sobhani A, Khoshneviszadeh M, Shafiee A (2013) Phenylimino-2H-chromen-3-carboxamide derivatives as novel small molecule inhibitors of β-secretase (BACE1). Bioorg Med Chem 21:2396–2412

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adhes Migr 3:88–93

    Article  Google Scholar 

  • Greig NH, Utsuki T, Yu Q, Zhu X, Holloway HW, Perry T, Lee B, Ingram DK, Lahiri DK (2001) A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 17:159–165

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hatano T, Ogawa N, Kira R, Yasuhara T, Okuda T (1989) Tannins of cornaceous plants. I. coenusiins A, B and C, dimeric monomeric and trimeric hydrolyzable tannins from Cornous officinalis, and orientation of valoneoyl group in related tannins. Chem Pharm Bull 37:2083–2090

    Article  CAS  PubMed  Google Scholar 

  • Hatano T, Yasuhara T, Abe R, Okuda T (1990) A galloylated monoterpene glucoside and a dimeric hydrosable tannin from Cornus officinalis. Phytochemistry 29:2975–2978

    Article  CAS  Google Scholar 

  • Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18:8126–8132

    CAS  PubMed  Google Scholar 

  • Hsieh PS, Jin JS, Chiang CF, Chan PC, Chen CH, Shih KC (2009) COX-2-mediated inflammation in fat is crucial for obesitylinked insulin resistance and fatty liver. Obesity 17:1150–1157

    CAS  PubMed  Google Scholar 

  • Jiang WL, Chen XG, Zhu HB, Hou J, Tian JW (2009) Cornuside attenuates apoptosis and ameliorates mitochondrial energy metabolism in rat cortical neurons. Pharmacology 84:162–170

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Jin SE, Choi RJ, Kim DH, Kim YS, Ryu JH, Kim DW, Son YK, Park JJ, Choi JS (2010) Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacity, as well as inhibition of ChEs and BACE1. Life Sci 87:420–430

    Article  CAS  PubMed  Google Scholar 

  • Kang DG, Moon MK, Lee AS, Kwon TO, Kim JS, Lee HS (2007) Cornuside suppresses cytokine-induced proinflammatory and adhesion molecules in the human umbilical vein endothelial cells. Biol Pharm Bull 30:1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  • Lee SO, Kim SY, Han SM, Kim HM, Ham SS, Kang IJ (2006) Corni Fructus scavenges hydroxy radicals and decreases oxidative stress in endothelial cells. J Med Food 9:594–598

    Article  PubMed  Google Scholar 

  • Ma H, Liu W, Frost L, Kirschenbaum LJ, Dain JA, Seeram NP (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 7:2213–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald IR, Rockwood K, Martin E, Darvesh S (2014) Cholinesterase inhibition in Alzheimer’s disease: is specificity the answer? J Alzheimers Dis 42:379–384

    CAS  PubMed  Google Scholar 

  • Meena P, Nemaysh V, Khatri M, Manral A, Luthra PM, Tiwari M (2015) Synthesis, biological evaluation and molecular docking study of novel piperidine and pipe azine derivatives as multi-targeted agents to treat Alzheimer’s disease. Bioorg Med Chem 23:1135–1148

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Auto dock 4 and auto-dock tools 4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338

    Article  PubMed  PubMed Central  Google Scholar 

  • Park CH, Yamabe N, Noh JS, Kang KS, Tanaka T, Yokozawa T (2009) The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice. Biol Pharm Bull 32:1734–1740

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Wei Z, Lau BH (1998) Fructus Corni enhances endothelial cell antioxidant defenses. Gen Pharmacol 31:221–225

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

  • Rahim F, Javed MT, Ullah H, Wadood A, Taha M, Ashraf M, Qurat-ul-Ain, Khan MA, Khan F, Mirza S, Khan KM (2015) Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorg Chem 62:106–116

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Corral S, Tan DX, Manchester L, Reiter RJ (2015) Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. Oxid Med Cell Longev. doi:10.1155/2015/985845

    PubMed  PubMed Central  Google Scholar 

  • Sancheti S, Sancheti S, Um BH, Seo SY (2010) 1,2,3,4,6-Penta-O-galloyl-β-d-glucose: a cholinesterase inhibitor from Terminalia chebula. S Afr J Bot 76:285–288

    Article  CAS  Google Scholar 

  • Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds in human nutrition. J Food Sci Agric 80:1094–1117

    Article  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3:75–80

    Article  CAS  PubMed  Google Scholar 

  • Song SZ, Choi YH, Jin GY, Li GZ, Yan GH (2011) Protective effect of cornuside against carbon tetrachloride-induced acute hepatic injury. Biosci Biotechnol Biochem 75:656–661

    Article  CAS  PubMed  Google Scholar 

  • Talesa VN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 122:1961–1969

    Article  CAS  PubMed  Google Scholar 

  • Yamabe N, Kang KS, Park CH, Tanaka T, Yokozawa T (2009) 7-O-galloyl-d-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation end products in the diabetic kidney. Biol Pharm Bull 32:657–664

    Article  CAS  PubMed  Google Scholar 

  • Yi Z, Wang Z, Li H, Liu M (2004) Inhibitory effect of tellimagrandin ion chemically induced differentiation of human leukemia K562 cells. Toxicol Lett 147:109–119

    Article  CAS  PubMed  Google Scholar 

  • Yi ZC, Liu YZ, Li HX, Yin Y, Zhuang FY, Fan YB, Wang Z (2006) Tellimagrandin I enhances gap junctional communication and attenuates the tumor phenotype of human cervical carcinoma HeLa cells in vitro. Cancer Lett 242:77–87

    Article  CAS  PubMed  Google Scholar 

  • Yi ZC, Liu YZ, Li HX, Wang Z (2009) Chebulinic acid and tellimagrandin I inhibit DNA strand breaks by hydroquinone/Cu(II) and H(2)O(2)/Cu(II), but potentiate DNA strand breaks by H(2)O(2)/Fe(II). Toxicol In Vitro 23:667–673

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ah Jung or Jae Sue Choi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakta, H.K., Park, C.H., Yokozawa, T. et al. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits. Arch. Pharm. Res. 40, 836–853 (2017). https://doi.org/10.1007/s12272-017-0924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0924-z

Keywords

Navigation