Skip to main content
Log in

Protection against amyloid beta cytotoxicity by sulforaphane: Role of the proteasome

  • Research Article
  • Drug Efficacy and Safety
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The 26S proteasome plays a major role in degradation of abnormal proteins within the cell. The indirect antioxidant including sulforaphane (SFN) protects cells from oxidative damage by increasing the expression of Nrf2-target genes. It has been observed that the expression of multiple subunits of the proteasome was up-regulated by indirect antioxidants through the Nrf2 pathway. In the current study, the role of SFN in amyloid β1–42 (Aβ1–42)-induced cytotoxicity has been investigated in murine neuroblastoma cells. Treatment with SFN protected cells from Aβ1–42-mediated cell death in Neuro2A and N1E 115 cells. Inhibition of proteasome activities by MG132 could abolish the protective effect of SFN against Aβ1–42. Neuro2A cells, which were stably overexpressing the catalytic subunit of the proteasome PSMB5, showed an elevated resistance toward Aβ1–42 toxicity compared to control cells. Furthermore, the in vitro assay demonstrated that the Aβ1–42 peptide is degraded by the proteasome fraction. These results suggest that proteasome-inducing indirect antioxidants may facilitate the removal of the Aβ1–42 peptide and lead to the amelioration of abnormal protein-associated etiologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barelli, H., Lebeau, A., Vizzavona, J., Delaere, P., Chevallier, N., Drouot, C., Marambaud, P., Ancolio, K., Buxbaum, J. D., Khorkova, O., Heroux, J., Sahasrabudhe, S., Martinez, J., Warter, J. M., Mohr, M., and Checler, F., Characterization of new polyclonal antibodies specific for 40 and 42 amino acid-long amyloid beta peptides: their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer’s disease and cerebral amyloid angiopathy cases. Mol Med, 3, 695–707 (1997).

    PubMed  CAS  Google Scholar 

  • Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., and Mitchell, J. B., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res, 47, 936–942 (1987).

    PubMed  CAS  Google Scholar 

  • Checler, F., da Costa, C. A., Ancolio, K., Chevallier, N., Lopez-Perez, E., and Marambaud, P., Role of the proteasome in Alzheimer’s disease. Biochim Biophys Acta, 1502, 133–138 (2000).

    PubMed  CAS  Google Scholar 

  • da Costa, C. A., Ancolio, K., and Checler, F., C-terminal maturation fragments of presenilin 1 and 2 control secretion of APP alpha and A beta by human cells and are degraded by proteasome. Mol Med, 5, 160–168 (1999).

    PubMed  Google Scholar 

  • Davies, K. J., Degradation of oxidized proteins by the 20S proteasome. Biochimie, 83, 301–310. (2001).

    Article  PubMed  CAS  Google Scholar 

  • Devi, L., Prabhu, B. M., Galati, D. F., Avadhani, N. G., and Anandatheerthavarada, H. K., Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci, 26, 9057–9068 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Eckert, A., Steiner, B., Marques, C., Leutz, S., Romig, H., Haass, C., and Muller, W. E., Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J Neurosci Res, 64, 183–192 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Estus, S., Golde, T. E., and Younkin, S. G., Normal processing of the Alzheimer’s disease amyloid beta protein precursor generates potentially amyloidogenic carboxyl-terminal derivatives. Ann N Y Acad Sci, 674, 138–148 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Fahey, J. W. and Talalay, P., Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol, 37, 973–979 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Glickman, M. H. and Ciechanover, A., The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82, 373–428. (2002).

    PubMed  CAS  Google Scholar 

  • Gregori, L., Fuchs, C., Figueiredo-Pereira, M. E., Van Nostrand, W. E., and Goldgaber, D., Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem, 270, 19702–19708 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., Hypothesis: proteasomal dysfunction: a primary event in neurogeneration that leads to nitrative and oxidative stress and subsequent cell death. Ann N Y Acad Sci, 962, 182–194. (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hyun, D. H., Lee, M., Halliwell, B., and Jenner, P., Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem, 86, 363–373. (2003).

    Article  PubMed  CAS  Google Scholar 

  • Jarrett, J. T., Berger, E. P., and Lansbury, P. T. Jr., The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry, 32, 4693–4697 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B., The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–736 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Keller, J. N., Dimayuga, E., Chen, Q., Thorpe, J., Gee, J., and Ding, Q., Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol. 36, 2376–2391. (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kensler, T. W., Wakabayashi, N., and Biswal, S., Cell Survival Responses to Environmental Stresses Via the Keap1-Nrf2-ARE Pathway. Annu Rev Pharmacol Toxicol, 47, 89–116 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Kwak, M. K., Cho, J. M., Huang, B., Shin, S., and Kensler, T. W., Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxidemediated cytotoxicity in murine neuroblastoma cells. Free Radic Biol Med, 43, 809–817 (2007a).

    Article  PubMed  CAS  Google Scholar 

  • Kwak, M. K., Huang, B., Chang, H., Kim, J. A., and Kensler, T. W., Tissue specific increase of the catalytic subunits of the 26S proteasome by indirect antioxidant dithiolethione in mice: enhanced activity for degradation of abnormal protein. Life Sci, 80, 2411–2420 (2007b).

    Article  PubMed  CAS  Google Scholar 

  • Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M., and Kensler, T. W., Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol, 23, 8786–8794. (2003a).

    Article  PubMed  CAS  Google Scholar 

  • Kwak, M. K., Wakabayashi, N., Itoh, K., Motohashi, H., Yamamoto, M., and Kensler, T. W., Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem, 278, 8135–8145. (2003b).

    Article  PubMed  CAS  Google Scholar 

  • LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., and Jay, G., The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet, 9, 21–30 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lam, Y. A., Pickart, C. M., Alban, A., Landon, M., Jamieson, C., Ramage, R., Mayer, R. J., and Layfield, R., Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci U S A, 97, 9902–9906. (2000).

    Article  PubMed  CAS  Google Scholar 

  • Marambaud, P., Lopez-Perez, E., Wilk, S., and Checler, F., Constitutive and protein kinase C-regulated secretory cleavage of Alzheimer’s beta-amyloid precursor protein: different control of early and late events by the proteasome. J Neurochem, 69, 2500–2505 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K., Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 82, 4245–4249 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev, 77, 1081–1132 (1997).

    PubMed  CAS  Google Scholar 

  • McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L., Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol, 46, 860–866 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nunan, J., Shearman, M. S., Checler, F., Cappai, R., Evin, G., Beyreuther, K., Masters, C. L., and Small, D. H., The C-terminal fragment of the Alzheimer’s disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from gamma-secretase. Eur J Biochem, 268, 5329–5336 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Nunan, J., Williamson, N. A., Hill, A. F., Sernee, M. F., Masters, C. L., and Small, D. H., Proteasome-mediated degradation of the C-terminus of the Alzheimer’s disease beta-amyloid protein precursor: effect of C-terminal truncation on production of beta-amyloid protein. J Neurosci Res, 74, 378–385 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Poppek, D. and Grune, T., Proteasomal defense of oxidative protein modifications. Antioxid Redox Signal, 8, 173–184 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J. et al., Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature, 361, 260–263 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Shastry, B. S., Neurodegenerative disorders of protein aggregation. Neurochem Int 43, 1–7. (2003).

    Article  PubMed  CAS  Google Scholar 

  • Stefani, M. and Dobson, C. M., Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med, 27, 27 (2003).

    Google Scholar 

  • Voges, D., Zwickl, P., and Baumeister, W., The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem., 68, 1015–1068. (1999).

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science, 245, 417–420 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Kyoung Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HM., Kim, JA. & Kwak, MK. Protection against amyloid beta cytotoxicity by sulforaphane: Role of the proteasome. Arch. Pharm. Res. 32, 109–115 (2009). https://doi.org/10.1007/s12272-009-1124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-1124-2

Key words

Navigation