Skip to main content
Log in

Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase

  • Research Article
  • Drug Efficacy and Safety
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

As part of our ongoing search of natural sources for therapeutic and preventive agents for diabetic complications, the rat lens aldose reductase (RLAR) inhibitory effect of Coptidis Rhizoma (the rhizome of Coptis chinensis Franch) was evaluated. Its extract and fractions exhibited broad and moderate RLAR inhibitory activities of 38.9∼67.5 μg/mL. In an attempt to identify bioactive components, six quaternary protoberberine-type alkaloids (berberine, palmatine, jateorrhizine, epiberberine, coptisine, and groenlandicine) and one quaternary aporphine-type alkaloid (magnoflorine) were isolated from the most active n-BuOH fraction, and the chemical structures therein were elucidated on the basis of spectroscopic evidence and comparison with published data. The anti-diabetic complications capacities of seven C. chinensis-derived alkaloids were evaluated via RLAR and human recombinant AR (HRAR) inhibitory assays. Although berberine and palmatine were previously reported as prime contributors to AR inhibition, these two major components exhibited no AR inhibitory effects at a higher concentration of 50 μg/ml in the present study. Conversely, epiberberine, coptisine, and groenlandicine exhibited moderate inhibitory effects with IC50 values of 100.1, 118.4, 140.1 μM for RLAR and 168.1, 187.3, 154.2 μM for HRAR. The results clearly indicated that the presence of the dioxymethylene group in the D ring and the oxidized form of the dioxymethylene group in the A ring were partly responsible for the AR inhibitory activities of protoberberine-type alkaloids. Therefore, Coptidis Rhizoma, and the alkaloids contained therein, would clearly have beneficial uses in the development of therapeutic and preventive agents for diabetic complications and diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cho, J. Y., Kim, A. R., and Park, M. H., Lignans from the rhizomes of Coptis japonica differentially act as anti-inflammatory principles. Planta Med., 67, 312–316 (2001).

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente, J. A., Manzanaro, S., Martín, M. J., de Quesada, T. G., Reymundo, I., Luengo, S. M., and Gago, F., Synthesis, activity, and molecular modeling studies of novel human aldose reductase inhibitors based on a marine natural product. J. Med. Chem., 46, 5208–5221 (2003).

    Article  PubMed  Google Scholar 

  • Doggrell, S. A., Berberine-a novel approach to cholesterol lowering. Expert. Opin. Investig. Drugs., 14, 683–685 (2005).

    Article  PubMed  CAS  Google Scholar 

  • El-Kabbani, O., and Podjarny, A., Selectivity determinants of the aldose and aldehyde reductase inhibitor-binding sites. Cell Mol. Life Sci., 64, 1970–1978 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Grycová, L., Dostál, J., and Marek, R., Quaternary protoberberine alkaloids. Phytochemistry., 68, 150–175 (2007).

    Article  PubMed  Google Scholar 

  • Hayman, S. and Kinoshita, J. H., Isolation and properties of lens aldose reductase. J. Biol. Chem., 240, 877–882 (1965).

    PubMed  CAS  Google Scholar 

  • Hsieh, Y. S., Kuo, W. H., Lin, T. W., Chang, H. R., Lin, T. H., Chen, P. N., and Chu, S. C. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. J. Agric. Food Chem., 55, 10437–10445 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Huang, C., Zhang, Y., Gong, Z., Sheng, X., Li, Z., Zhang, W., and Qin, Y., Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochem. Biophys. Res. Commun., 348, 571–578 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Huang, K. C. The pharmacology of Chinese herbs, CRC press Inc., Boca Raton: FL., pp. 381–382 (1999).

    Google Scholar 

  • Hung, T. M., Lee, J. P., Min, B. S., Choi, J. S., Na, M., Zhang, X., Ngoc, T. M., Lee, I., and Bae, K., Magnoflorine from Coptidis Rhizoma protects high density lipoprotein during oxidant stress. Biol. Pharm. Bull., 30, 1157–1160 (2007)

    Article  PubMed  CAS  Google Scholar 

  • Kawanishi, K., Ueda, H., and Moriyasu, M., Aldose reductase inhibitors from the nature. Curr. Med. Chem. 10, 1353–1374 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ko, W. H., Yao, X. Q., Lau, C. W., Law, W. I., Chen, Z. Y., Kwok, W., Ho, K., and Huang, Y. Vasorelaxant and antiproliferative effects of berberine. Eur. J. Pharmacol., 399, 187–196 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kong, W., Wei, J., Abidi, P., Lin, M., Inaba, S., Li, C., Wang, Y., Wang, Z., Si, S., Pan, H., Wang, S., Wu, J., Wang, Y., Li, Z., Liu, J., and Jiang, J. D., Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 10, 1344–1351 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kuo, C. L., Chi, C. W., and Liu, T. Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett., 203, 127–137 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. S., Rat lens aldose reductase inhibitory activities of Coptis japonica root-derived isoquinoline alkaloids. J. Agric. Food Chem., 50, 7013–7016 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. Y. and Kim, C. W., Studies on the constituents of Berberis amurensis Ruprecht. Kor. J. Pharacogn., 28, 257–263 (1997).

    Google Scholar 

  • Manzanaro, S., Salva, J., and de la Fuente, J. A., Phenolic marine natural products as aldose reductase inhibitors. J. Nat. Prod., 69, 1485–1487 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, M., Kijima, H., Iinuma, M., Tanaka, T., and Goto, K., Coumarin derivatives in Coptis trifolia. Phytochemistry, 31, 717–719 (1992).

    Article  CAS  Google Scholar 

  • Nakai, N, Fujii, Y, Kobashi, K., and Nomura, K., Aldose reductase inhibitors: flavonoids, alkaloids, acetophenones, benzophenones, and spirohydantoins of chroman. Arch. Biochem. Biophys., 239, 491–496 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, C., Yamaoka, T., Mizutani, M., Yamashita, K., Akera, T., and Tanimoto, T., Purification and characterization of the recombinant human aldose reductase expressed in baculovirus system. Biochim. Biophys. Acta., 1078, 171–178 (1991).

    PubMed  CAS  Google Scholar 

  • Racková, L, Májeková, M., Kost’álová, D., and Stefek, M. Antiradical and antioxidant activities of alkaloids isolated from Mahonia aquifolium. Structural aspects. Bioorg. Med. Chem., 12, 4709–4715 (2004).

    Article  PubMed  Google Scholar 

  • Schinella, G. R., Tournier, H. A., Prieto, J. M., Mordujovich de Buschiazzo, P., and Ríos, J. L. Antioxidant activity of anti-inflammatory plant extracts. Life Sci., 70, 1023–1033 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Shirwaikar, A., Shirwaikar, A., Rajendran, K., and Punitha, I. S. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol. Pharm. Bull., 29, 1906–1910 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Sun, J., Ma, J. S., Jin, J., Wang, H. S., Wen, Q. H., Zhang, H. G., and Zhou, Q. L., Qualitative and quantitative determination of the main components of huanglianjiedu decoction by HPLC-UV/MS. Yao Xue Xue Bao., 41, 380–384 (2006).

    PubMed  CAS  Google Scholar 

  • Tang, L. Q., Wei, W., Chen, L. M., and Liu, S., Effects of berberine on diabetes induced by alloxan and a high-fat/ high-cholesterol diet in rats. J. Ethnopharmacol., 108, 109–115 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Tse, W. P., Che, C. T., Liu, K., and Lin, Z. X. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol., 108,133–141 (2006).

    Article  PubMed  Google Scholar 

  • Yahara, S., Satoshiro, M., Nishioka, I., Nagasawa, T., and Oura, H., Isolation and characterization of phenolic compounds from Coptidis Rhizoma. Chem. Pharm. Bull., 33, 527–531 (1985).

    CAS  Google Scholar 

  • Yokozawa, T., Satoh, A., Cho, E. J., Kashiwada, Y., and Ikeshiro, Y., Protective role of Coptidis Rhizoma alkaloids against peroxynitrite-induced damage to renal tubular epithelial cells. J. Pharm. Pharmacol., 57, 367–374 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, K., Kinoshita, H., Kan, Y., and Arihara, R., Neolignans and phenylpropanoids from the rhizomes of Coptis japonica var. dissecta. Chem. Pharm. Bull., 43, 578–581 (1995).

    CAS  Google Scholar 

  • Yuan, L., Tu, D., Ye, X., and Wu, J., Hypoglycemic and hypocholesterolemic effects of Coptis chinensis franch inflorescence. Plant Foods Hum. Nutr., 61,139–144 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sue Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, H.A., Yoon, N.Y., Bae, H.J. et al. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch. Pharm. Res. 31, 1405–1412 (2008). https://doi.org/10.1007/s12272-001-2124-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-001-2124-z

Key words

Navigation