Skip to main content
Log in

A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chitosan/β-glycerophosphate/collagen (C/GP/Co) is a promising injectable scaffold in the bone tissue engineering. In this study, we prepared this scaffold and evaluated its biocompatibility and effects on the osteogenic differentiation of mesenchymal stem cells (MSCs). After fabrication, the C/GP/Co hydrogel was examined in a scanning electron microscope (SEM) and showed a porous microstructure. Its biocompatibility was assessed by cell morphology and cell viability assays. Cell morphological observations were performed by fluorescent microscope in 2D cultivation and by laser confocal scanning microscope (LCSM) in 3D cultivation, respectively. Cell viability in 2D and that in 3D cultivation were both evaluated by the Cell Counting Kit-8 (CCK-8) assay. Its effect on osteogenic differentiation of MSCs in vitro was clarified by alkaline phosphatase (ALP) activity, Alizarin Red staining, and real-time polymerase chain reaction (Real-time PCR). An additional experiment of the ectopic bone formation in nude mice was conducted to investigate its effects on osteogenic differentiation of MSCs after subcutaneous injection. The results proved that C/GP/Co hydrogel exhibited good biocompatibility and enhanced the in vitro osteogenic differentiation of MSCs. In the experiment of ectopic bone formation, this hydrogel demonstrated its capability of supporting neovascularization and differentiation of MSCs toward osteogenic lineage. Therefore, C/GP/Co hydrogel scaffold holds a great promise for the bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chenite, A., C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, and A. Selmani (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21: 2155–2161.

    Article  CAS  Google Scholar 

  2. Ahmadi, R. and J. D. de Bruijn (2008) Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. J. Biomed. Mater. Res. A 86: 824–832.

    Google Scholar 

  3. Cho, M. H., K. S. Kim, H. H. Ahn, M. S. Kim, S. H. Kim, G. Khang, B. Lee, and H. B. Lee (2008) Chitosan gel as an in situforming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Eng. Part A 14: 1099–1108.

    Article  CAS  Google Scholar 

  4. Richardson, S. M., N. Hughes, J. A. Hunt, A. J. Freemont, and J. A. Hoyland (2008) Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 29: 85–93.

    Article  CAS  Google Scholar 

  5. Kim, K. S., J. H. Lee, H. H. Ahn, J. Y. Lee, G. Khang, B. Lee, H. B. Lee, and M. S. Kim (2008) The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials 29: 4420–4428.

    Article  CAS  Google Scholar 

  6. Wang, L. and J. P. Stegemann (2010) Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials 31: 3976–3985.

    Article  CAS  Google Scholar 

  7. Song, K., M. Qiao, T. Liu, B. Jiang, H. M. Macedo, X. Ma, and Z. Cui (2010) Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. J. Mater. Sci. Mater. Med. 21: 2835–2842.

    Article  CAS  Google Scholar 

  8. Sun, B., W. Ma, F. Su, Y. Wang, J. Liu, D. Wang, and H. Liu (2011) The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/beta-glycerophosphate hydrogel: In vitro and in vivo. J. Mater. Sci. Mater. Med. 22: 2111–2118.

    Article  CAS  Google Scholar 

  9. Glowacki, J. and S. Mizuno (2008) Collagen scaffolds for tissue engineering. Biopolymers 89: 338–344.

    Article  CAS  Google Scholar 

  10. Wang, G., L. Zheng, H. Zhao, J. Miao, C. Sun, N. Ren, J. Wang, H. Liu, and X. Tao (2011) In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng. Part A 17: 1341–1349.

    Article  CAS  Google Scholar 

  11. Wang, H., Y. Li, Y. Zuo, J. Li, S. Ma, and L. Cheng (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28: 3338–3348.

    Article  CAS  Google Scholar 

  12. Zhi, L., C. Chen, X. Pang, H. Uludag, and H. Jiang (2011) Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro. Int. Orthop. 35: 1889–1895.

    Article  Google Scholar 

  13. Rafat, M., F. Li, P. Fagerholm, N. S. Lagali, M. A. Watsky, R. Munger, T. Matsuura, and M. Griffith (2008) PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29: 3960–3972.

    Article  CAS  Google Scholar 

  14. Raghunath, J., J. Rollo, K. M. Sales, P. E. Butler, and A. M. Seifalian (2007) Biomaterials and scaffold design: Key to tissue-engineering cartilage. Biotechnol. Appl. Biochem. 46: 73–84.

    Article  CAS  Google Scholar 

  15. Liao, H. T., C. T. Chen, and J. P. Chen (2011) Osteogenic differentiation and ectopic bone formation of canine bone marrowderived mesenchymal stem cells in injectable thermo-responsive polymer hydrogel. Tissue Eng. Part C Methods 17: 1139–1149.

    Article  CAS  Google Scholar 

  16. Sun, H., K. Feng, J. Hu, S. Soker, A. Atala, and P. X. Ma (2010) Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials 31: 1133–1139.

    Article  CAS  Google Scholar 

  17. Gauthaman, K., J. R. Venugopal, F. C. Yee, A. Biswas, S. Ramakrishna, and A. Bongso (2011) Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Eng. Part A 17: 71–81.

    Article  CAS  Google Scholar 

  18. Kim, I. Y., S. J. Seo, H. S. Moon, M. K. Yoo, I. Y. Park, B. C. Kim, and C. S. Cho (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26: 1–21.

    Article  CAS  Google Scholar 

  19. Zhang, Y. and M. Zhang (2001) Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res. 55: 304–312.

    Article  CAS  Google Scholar 

  20. Kawakami, T., M. Antoh, H. Hasegawa, T. Yamagishi, M. Ito, and S. Eda (1992) Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials 13: 759–763.

    Article  CAS  Google Scholar 

  21. Di, M. A., M. Sittinger, and M. V. Risbud (2005) Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26: 5983–5990.

    Article  Google Scholar 

  22. Bear, M., M. Butcher, and S. G. Shaughnessy (2008) Oxidized low-density lipoprotein acts synergistically with beta-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells. J. Cell. Biochem. 105: 185–193.

    Article  CAS  Google Scholar 

  23. Alonso, M., S. Claros, J. Becerra, and J. A. Andrades (2008) The effect of type I collagen on osteochondrogenic differentiation in adipose-derived stromal cells in vivo. Cytotherapy 10: 597–610.

    Article  CAS  Google Scholar 

  24. Kihara, T., M. Hirose, A. Oshima, and H. Ohgushi (2006) Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochem. Biophys. Res. Commun. 341: 1029–1035.

    Article  CAS  Google Scholar 

  25. Kruger, E. A., D. D. Im, D. S. Bischoff, C. T. Pereira, W. Huang, G. H. Rudkin, D. T. Yamaguchi, and T. A. Miller (2011) In vitro mineralization of human mesenchymal stem cells on threedimensional type I collagen versus PLGA scaffolds: a comparative analysis. Plast. Reconstr. Surg. 127: 2301–2311.

    Article  CAS  Google Scholar 

  26. Ryu, Y. M., Y. S. Hah, B. W. Park, D. R. Kim, G. S. Roh, J. R. Kim, U. K. Kim, G. J. Rho, G. H. Maeng, and J. H. Byun (2011) Osteogenic differentiation of human periosteal-derived cells in a three-dimensional collagen scaffold. Mol. Biol. Rep. 38: 2887–2894.

    Article  CAS  Google Scholar 

  27. Tsai, K. S., S. Y. Kao, C. Y. Wang, Y. J. Wang, J. P. Wang, and S. C. Hung (2010) Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J. Biomed. Mater. Res. A 94: 673–682.

    Google Scholar 

  28. Mathews, S., R. Bhonde, P. K. Gupta, and S. Totey (2011) A novel tripolymer coating demonstrating the synergistic effect of chitosan, collagen type 1 and hyaluronic acid on osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 414: 270–276.

    Article  CAS  Google Scholar 

  29. Ma, L., C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, and C. Han (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24: 4833–4841.

    Article  CAS  Google Scholar 

  30. Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman (1996) Collagen fibril formation. Biochem. J. 316: 1–11.

    CAS  Google Scholar 

  31. Hu, X., S. H. Park, E. S. Gil, X. X. Xia, A. S. Weiss, and D. L. Kaplan (2011) The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials 32: 8979–8989.

    Article  CAS  Google Scholar 

  32. Lutolf, M. P., P. M. Gilbert, and H. M. Blau (2009) Designing materials to direct stem-cell fate. Nature 462: 433–441.

    Article  CAS  Google Scholar 

  33. Gilbert, P. M., K. L. Havenstrite, K. E. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329: 1078–1081.

    Article  CAS  Google Scholar 

  34. Peault, B., M. Rudnicki, Y. Torrente, G. Cossu, J. P. Tremblay, T. Partridge, E. Gussoni, L. M. Kunkel, and J. Huard (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15: 867–877.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Yang or Jian Zhong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, K., Zhang, Y.L., Yang, Z. et al. A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells. Biotechnol Bioproc E 18, 155–163 (2013). https://doi.org/10.1007/s12257-012-0429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0429-z

Keywords

Navigation