Skip to main content
Log in

Polarized Actin Structural Dynamics in Response to Cyclic Uniaxial Stretch

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Endothelial cell (EC) alignment to directional flow or stretch supports anti-inflammatory functions, but mechanisms controlling polarized structural adaptation in response to physical cues remain unclear. This study aimed to determine whether factors associated with early actin edge ruffling implicated in cell polarization are prerequisite for stress fiber (SF) reorientation in response to cyclic uniaxial stretch. Time-lapse analysis of EGFP-actin in confluent ECs showed that onset of either cyclic uniaxial or equibiaxial stretch caused a non-directional increase in edge ruffling. Edge activity was concentrated in a direction perpendicular to the stretch axis after 60 min, consistent with the direction of SF alignment. Rho-kinase inhibition caused reorientation of both stretch-induced edge ruffling and SF alignment parallel to the stretch axis. Arp2/3 inhibition attenuated stretch-induced cell elongation and disrupted polarized edge dynamics and microtubule organizing center reorientation, but it had no effect on the extent of SF reorientation. Disrupting localization of p21-activated kinase did not prevent stretch-induced SF reorientation, suggesting that this Rac effector is not critical in regulating stretch-induced cytoskeletal remodeling. Overall, these results suggest that directional edge ruffling is not a primary mechanism that guides SF reorientation in response to stretch; the two events are coincident but not causal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

EC:

Endothelial cell

SF:

Stress fiber

Arp2/3:

Actin-related protein-2/3

MTOC:

Microtubule organizing center

References

  1. Birukov, K. G., A. A. Birukova, S. M. Dudek, A. D. Verin, M. T. Crow, X. Zhan, N. DePaola, and J. G. Garcia. Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am. J. Respir. Cell Mol. Biol. 26:453–464, 2002.

    Article  Google Scholar 

  2. Caille, N., Y. Tardy, and J. J. Meister. Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann. Biomed. Eng. 26:409–416, 1998.

    Article  Google Scholar 

  3. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292:H1209–H1224, 2007.

    Article  Google Scholar 

  4. Choi, C. K., and B. P. Helmke. Short-term shear stress induces rapid actin dynamics in living endothelial cells. Mol. Cell Biomech. 5:247–258, 2008.

    Google Scholar 

  5. Fisher, N. Statistical Analysis of Circular Data. Cambridge, MA: Cambridge University Press, 1993.

    Book  MATH  Google Scholar 

  6. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton. 40:317–330, 1998.

    Article  Google Scholar 

  7. Goldyn, A. M., B. A. Rioja, J. P. Spatz, C. Ballestrem, and R. Kemkemer. Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. J. Cell Sci. 122:3644–3651, 2009.

    Article  Google Scholar 

  8. Goley, E. D., and M. D. Welch. The Arp2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7:713–726, 2006.

    Article  Google Scholar 

  9. Gomes, E. R., S. Jani, and G. G. Gundersen. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463, 2005.

    Article  Google Scholar 

  10. Gotlieb, A. I., L. M. May, L. Subrahmanyan, and V. I. Kalnins. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J. Cell Biol. 91:589–594, 1981.

    Article  Google Scholar 

  11. Hayakawa, K., N. Sato, and T. Obinata. Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp. Cell Res. 268:104–114, 2001.

    Article  Google Scholar 

  12. Helmke, B. P., R. D. Goldman, and P. F. Davies. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86:745–752, 2000.

    Article  Google Scholar 

  13. Helmke, B. P., A. B. Rosen, and P. F. Davies. Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J . 84:2691–2699, 2003.

    Article  Google Scholar 

  14. Hiraoka, Y., J. W. Sedat, and D. A. Agard. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys. J . 57:325–333, 1990.

    Article  Google Scholar 

  15. Hotulainen, P., and P. Lappalainen. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173:383–394, 2006.

    Article  Google Scholar 

  16. Hsu, H. J., C. F. Lee, and R. Kaunas. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4:e4853, 2009.

    Article  Google Scholar 

  17. Hsu, H. J., C. F. Lee, A. Locke, S. Q. Vanderzyl, and R. Kaunas. Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS One 5, 2010.

  18. Hu, Y. L., S. Li, H. Miao, T. C. Tsou, M. A. del Pozo, and S. Chien. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J. Vasc. Res. 39:465–476, 2002.

    Article  Google Scholar 

  19. Huang, L., P. S. Mathieu, and B. P. Helmke. A stretching device for high-resolution live-cell imaging. Ann. Biomed. Eng. 38:1728–1740, 2010.

    Article  Google Scholar 

  20. Huang, L., and B. P. Helmke. A semi-automatic method for image analysis of edge dynamics in living cells. Cell. Mol. Bioeng. 4:205–219, 2011.

    Article  Google Scholar 

  21. Iba, T., and B. E. Sumpio. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc. Res. 42:245–254, 1991.

    Article  Google Scholar 

  22. Jones, T. A. Matlab functions to analyze directional (azimuthal) data—I: single-sample inference. Comput. Geosci. 32:166, 2006.

    Article  Google Scholar 

  23. Karlon, W. J., P. P. Hsu, S. Li, S. Chien, A. D. McCulloch, and J. H. Omens. Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Ann. Biomed. Eng. 27:712–720, 1999.

    Article  Google Scholar 

  24. Katsumi, A., J. Milanini, W. B. Kiosses, M. A. del Pozo, R. Kaunas, S. Chien, K. M. Hahn, and M. A. Schwartz. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158:153–164, 2002.

    Article  Google Scholar 

  25. Kaunas, R., P. Nguyen, S. Usami, and S. Chien. Cooperative effects of rho and mechanical stretch on stress fiber organization. Proc. Natl. Acad. Sci. USA 102:15895–15900, 2005.

    Article  Google Scholar 

  26. Kiosses, W. B., R. H. Daniels, C. Otey, G. M. Bokoch, and M. A. Schwartz. A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 147:831–844, 1999.

    Article  Google Scholar 

  27. Kiosses, W. B., J. Hood, S. Yang, M. E. Gerritsen, D. A. Cheresh, N. Alderson, and M. A. Schwartz. A dominant-negative p65 Pak peptide inhibits angiogenesis. Circ. Res. 90:697–702, 2002.

    Article  Google Scholar 

  28. Lee, C. F., C. Haase, S. Deguchi, and R. Kaunas. Cyclic stretch-induced stress fiber dynamics—dependence on strain rate, Rho-kinase and MLCK. Biochem Biophys. Res. Commun., 2010.

  29. Li, S., P. Butler, Y. Wang, Y. Hu, D. C. Han, S. Usami, J. L. Guan, and S. Chien. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl. Acad. Sci. USA 99:3546–3551, 2002.

    Article  Google Scholar 

  30. Li, S., N. F. Huang, and S. Hsu. Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96:1110–1126, 2005.

    Article  Google Scholar 

  31. Lin, X., and B. P. Helmke. Micropatterned structural control suppresses mechanotaxis of endothelial cells. Biophys. J. 95:3066–3078, 2008.

    Article  Google Scholar 

  32. Magdalena, J., T. H. Millard, and L. M. Machesky. Microtubule involvement in NIH 3T3 Golgi and MTOC polarity establishment. J. Cell Sci. 116:743–756, 2003.

    Article  Google Scholar 

  33. Matsumoto, T., Y. C. Yung, C. Fischbach, H. J. Kong, R. Nakaoka, and D. J. Mooney. Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng. 13:207–217, 2007.

    Article  Google Scholar 

  34. Mott, R. E., and B. P. Helmke. Mapping the dynamics of shear stress-induced structural changes in endothelial cells. Am. J. Physiol. Cell Physiol. 293:C1616–C1626, 2007.

    Article  Google Scholar 

  35. Ngu, H., Y. Feng, L. Lu, S. J. Oswald, G. D. Longmore, and F. C. Yin. Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain. Ann. Biomed. Eng. 38:208–222, 2010.

    Article  Google Scholar 

  36. Nolen, B. J., N. Tomasevic, A. Russell, D. W. Pierce, Z. Jia, C. D. McCormick, J. Hartman, R. Sakowicz, and T. D. Pollard. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460:1031–1034, 2009.

    Article  Google Scholar 

  37. Orr, A. W., R. Stockton, M. B. Simmers, J. M. Sanders, I. J. Sarembock, B. R. Blackman, and M. A. Schwartz. Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J. Cell Biol. 176:719–727, 2007.

    Article  Google Scholar 

  38. Stockton, R. A., E. Schaefer, and M. A. Schwartz. P21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 279:46621–46630, 2004.

    Article  Google Scholar 

  39. Sumpio, B. E. Hemodynamic forces and the biology of the endothelium: Signal transduction pathways in endothelial cells subjected to physical forces in vitro. J. Vasc. Surg. 13:744–746, 1991.

    Article  Google Scholar 

  40. To, C., B. H. Shilton, and G. M. Di Guglielmo. Synthetic triterpenoids target the Arp2/3 complex and inhibit branched actin polymerization. J. Biol. Chem. 285:27944–27957, 2010.

    Article  Google Scholar 

  41. Tsuji, T., T. Ishizaki, M. Okamoto, C. Higashida, K. Kimura, T. Furuyashiki, Y. Arakawa, R. B. Birge, T. Nakamoto, H. Hirai, and S. Narumiya. Rock and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J. Cell Biol. 157:819–830, 2002.

    Article  Google Scholar 

  42. Tzima, E., M. A. Del Pozo, W. B. Kiosses, S. A. Mohamed, S. Li, S. Chien, and M. A. Schwartz. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21:6791–6800, 2002.

    Article  Google Scholar 

  43. Wang, J. H., P. Goldschmidt-Clermont, J. Wille, and F. C. Yin. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34:1563–1572, 2001.

    Article  Google Scholar 

  44. Wojciak-Stothard, B., and A. J. Ridley. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J. Cell Biol. 161:429–439, 2003.

    Article  Google Scholar 

  45. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.

    Article  Google Scholar 

  46. Yano, Y., J. Geibel, and B. E. Sumpio. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am. J. Physiol. 271:C635–C649, 1996.

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Wayne Orr for the generous gift of Nck-binding PAK peptides and Martin Schwartz for valuable discussions. Supported by NIH Grant HL080956 and by a University of Virginia VPRGS Award.

Conflict of interest

Lawrence Huang and Brian P. Helmke declare that they have no conflicts of interest.

Statements of Human and Animal Rights and Informed Consent

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Helmke.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Helmke, B.P. Polarized Actin Structural Dynamics in Response to Cyclic Uniaxial Stretch. Cel. Mol. Bioeng. 8, 160–177 (2015). https://doi.org/10.1007/s12195-014-0370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0370-7

Keywords

Navigation