Skip to main content
Log in

Shear Stress Activates eNOS at the Endothelial Apical Surface Through β1 Containing Integrins and Caveolae

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

There is now a large body of evidence demonstrating that fluid mechanical forces generated by blood flowing through the vasculature play a direct role in regulating endothelial cell structure and function. Integrin receptors that localize to the basal surface of the endothelium participate in both outside-in and inside-out signaling events that influence endothelial gene expression and morphology in response to flow. Our analyses of apical plasma membranes derived from cultured bovine aortic endothelial cells revealed that integrins are also expressed on this cell surface. Here, we tested whether these integrins participate in mechanotransduction events that are known to occur on the endothelial cell luminal/apical membrane. We found that apically expressed β1 integrins are rapidly activated in response to acute shear stress. Blockade of β1 integrin activation attenuated a shear-induced signaling cascade involving Src-family kinase, PI3-kinase, Akt and eNOS on this cell surface. In addition, β1 integrin activation and associated signaling events were dependent on the structural integrity of caveolae but not the actin cytoskeleton. Taken together, these data indicate that endothelial responses to shear stress are mediated by spatially distinct pools of integrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Berk, B. C., M. A. Corson, T. E. Peterson, and H. Tseng. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow. J. Biomech. 28:1439–1450, 1995.

    Article  Google Scholar 

  2. Bhullar, I. S., Y. S. Li, H. Miao, E. Zandi, M. Kim, J. Y. Shyy, and S. Chien. Fluid shear stress activation of IkappaB kinase is integrin-dependent. J. Biol. Chem. 273:30544–30549, 1998.

    Article  Google Scholar 

  3. Carlile Klusacek, M., and V. Rizzo. Endothelial cytoskeletal reorganization in response to protease activated receptor-1 (Par1) stimulation is mediated by membrane rafts but not caveolae. Am. J. Physiol. Heart Circ. Physiol. 293:H366–H375, 2007.

    Google Scholar 

  4. Chachisvilis, M., Y. L. Zhang, and J. A. Frangos. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl. Acad. Sci. USA. 103:15463–15468, 2006.

    Article  Google Scholar 

  5. Gutierrez, J., and E. Brandan. A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol. Cell Biol. 30:1634–1649, 2010.

    Google Scholar 

  6. Hooper, N. M. Glypican-1 facilitates prion conversion in lipid rafts. J. Neurochem. 116:721–725, 2011.

    Google Scholar 

  7. Jin, Z. G., H. Ueba, T. Tanimoto, A. O. Lungu, M. D. Frame, and B. C. Berk. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93:354–363, 2003.

    Article  Google Scholar 

  8. Katsumi, A., A. W. Orr, E. Tzima, and M. A. Schwartz. Integrins in mechanotransduction. J. Biol. Chem. 279:12001–12004, 2004.

    Article  Google Scholar 

  9. Koshida, R., P. Rocic, S. Saito, T. Kiyooka, C. Zhang, and W. M. Chilian. Role of focal adhesion kinase in flow-induced dilation of coronary arterioles. Arterioscler. Thromb. Vasc. Biol. 25:2548–2553, 2005.

    Article  Google Scholar 

  10. Lee, H. J., and G. Y. Koh. Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem. Biophys. Res. Commun. 304:399–404, 2003.

    Article  Google Scholar 

  11. Li, S., M. Kim, Y. L. Hu, S. Jalali, D. D. Schlaepfer, T. Hunter, S. Chien, and J. Y. Shyy. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J. Biol. Chem. 272:30455–30462, 1997.

    Article  Google Scholar 

  12. Liu, Y., B. P. Chen, M. Lu, Y. Zhu, M. B. Stemerman, S. Chien, and J. Y. Shyy. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler. Thromb. Vasc. Biol. 22:76–81, 2002.

    Article  Google Scholar 

  13. Loufrani, L., and D. Henrion. Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med. Biol. Eng. Comput. 46:451–460, 2008.

    Article  Google Scholar 

  14. Luque, A., M. Gomez, W. Puzon, Y. Takada, F. Sanchez-Madrid, and C. Cabanas. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J. Biol. Chem. 271:11067–11075, 1996.

    Article  Google Scholar 

  15. Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119:508–518, 2006.

    Article  Google Scholar 

  16. Matthews, B. D., C. K. Thodeti, J. D. Tytell, A. Mammoto, D. R. Overby, and D. E. Ingber. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr. Biol. (Camb) 2:435–442, 2009.

    Article  Google Scholar 

  17. Monaghan-Benson, E., C. C. Mastick, and P. J. McKeown-Longo. A dual role for caveolin-1 in the regulation of fibronectin matrix assembly by uPAR. J. Cell Sci. 121:3693–3703, 2008.

    Article  Google Scholar 

  18. Muller, J. M., W. M. Chilian, and M. J. Davis. Integrin signaling transduces shear stress–dependent vasodilation of coronary arterioles. Circ. Res. 80:320–326, 1997.

    Article  Google Scholar 

  19. Muriel, O., A. Echarri, C. Hellriegel, D. M. Pavon, L. Beccari, and M. A. Del Pozo. Phosphorylated filamin A regulates actin-linked caveolae dynamics. J. Cell Sci. 124:2763–2776, 2011.

    Google Scholar 

  20. Nauli, S. M., Y. Kawanabe, J. J. Kaminski, W. J. Pearce, D. E. Ingber, and J. Zhou. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171, 2008.

    Article  Google Scholar 

  21. Paszek, M. J., D. Boettiger, V. M. Weaver, and D. A. Hammer. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput. Biol. 5:e1000604, 2009.

    Article  MathSciNet  Google Scholar 

  22. Radel, C., M. Carlile-Klusacek, and V. Rizzo. Participation of caveolae in beta1 integrin-mediated mechanotransduction. Biochem. Biophys. Res. Commun. 358:626–631, 2007.

    Article  Google Scholar 

  23. Radel, C., and V. Rizzo. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am. J. Physiol. Heart Circ. Physiol. 288:H936–H945, 2005.

    Article  Google Scholar 

  24. Rizzo, V., D. P. McIntosh, P. Oh, and J. E. Schnitzer. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J. Biol. Chem. 273:34724–34729, 1998.

    Article  Google Scholar 

  25. Rizzo, V., C. Morton, N. DePaola, J. E. Schnitzer, and P. F. Davies. Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am. J. Physiol. Heart Circ. Physiol. 285:H1720–H1729, 2003.

    Google Scholar 

  26. Rizzo, V., A. Sung, P. Oh, and J. E. Schnitzer. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J. Biol. Chem. 273:26323–26329, 1998.

    Article  Google Scholar 

  27. Saliez, J., C. Bouzin, G. Rath, P. Ghisdal, F. Desjardins, R. Rezzani, L. F. Rodella, J. Vriens, B. Nilius, O. Feron, J. L. Balligand, and C. Dessy. Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074, 2008.

    Article  Google Scholar 

  28. Shyy, J. Y., and S. Chien. Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91:769–775, 2002.

    Article  Google Scholar 

  29. Singh, R. D., D. L. Marks, E. L. Holicky, C. L. Wheatley, T. Kaptzan, S. B. Sato, T. Kobayashi, K. Ling, and R. E. Pagano. Gangliosides and beta1-integrin are required for caveolae and membrane domains. Traffic 11:348–360, 2010.

    Google Scholar 

  30. Tarbell, J. M., and M. Y. Pahakis. Mechanotransduction and the glycocalyx. J. Intern. Med. 259:339–350, 2006.

    Article  Google Scholar 

  31. Thodeti, C. K., B. Matthews, A. Ravi, A. Mammoto, K. Ghosh, A. L. Bracha, and D. E. Ingber. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ. Res. 104:1123–1130, 2009.

    Article  Google Scholar 

  32. Tzima, E., M. Angel del Pozo, S. Shattil, S. Shein, and M. Schwartz. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO 20:4639-4647, 2001

    Google Scholar 

  33. Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.

    Article  Google Scholar 

  34. Wang, Y., E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, and S. Chien. Visualizing the mechanical activation of Src. Nature 434:1040–1045, 2005.

    Article  Google Scholar 

  35. Wang, Y., H. Miao, S. Li, K. D. Chen, Y. S. Li, S. Yuan, J. Y. Shyy, and S. Chien. Interplay between integrins and FLK-1 in shear stress-induced signaling. Am. J. Physiol. Cell Physiol. 283:C1540–C1547, 2002.

    Article  Google Scholar 

  36. Yamamoto, K., R. Korenaga, A. Kamiya, and J. Ando. Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circ. Res. 87:385–391, 2000.

    Article  Google Scholar 

  37. Yang, B., C. Radel, D. Hughes, S. Kelemen, and V. Rizzo. p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler. Thromb. Vasc. Biol. 31:376–383, 2011.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Chris Radel and Dr. Jackcy Jacobs for their technical assistance. This work was supported by NIH grant RO1 HL086551to VR.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Rizzo.

Additional information

Associate Editor Jeffrey Fredberg oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Rizzo, V. Shear Stress Activates eNOS at the Endothelial Apical Surface Through β1 Containing Integrins and Caveolae. Cel. Mol. Bioeng. 6, 346–354 (2013). https://doi.org/10.1007/s12195-013-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0276-9

Keywords

Navigation