Skip to main content
Log in

Occurrence of Plasmid-Mediated AmpC β-Lactamases Among Escherichia coli and Klebsiella pneumoniae Clinical Isolates in a Tertiary Care Hospital in Bangalore

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Therapeutic options for infections caused by gram-negative organisms expressing plasmid-mediated AmpC β-lactamases are limited because these organisms are usually resistant to all the β-lactam antibiotics, except for cefepime, cefpirome and the carbapenems. These organisms are a major concern in nosocomial infections and should therefore be monitored in surveillance studies. Hence, this study was aimed out to determine the prevalence of plasmid-mediated AmpC β-lactamases in E. coli and K. pneumoniae from a tertiary care in Bangalore. A total of 63 E. coli and 27 K. pneumoniae were collected from a tertiary care hospital in Bangalore from February 2008 to July 2008. The isolates with decreased susceptibility to cefoxitin were subjected to confirmation test with three dimensional extract tests. Minimum inhibitory concentrations (MICs) were determined by agar dilution method. Conjugation experiments, plasmid profiling and susceptibility testing were carried out to investigate the underlying mechanism of resistance. In our study, 52 (57.7%) isolates showed resistance to cefoxitin, the occurrence of AmpC was found to be 7.7% of the total isolates. Plasmid analysis of the selected isolates showed the presence of a single plasmid of 26 kb in E. coli and 2 Kb in K. pneumoniae. Plasmid-mediated AmpC β-lactamases were found in 11.1% of K. pneumoniae and in 6.3% of E. coli. Curing and conjugation experiments showed that resistance to cephamycins and cephalosporins was plasmid-mediated. Our study has demonstrated the occurrence of plasmid-mediated AmpC in E. coli and K. pneumoniae which illustrates the importance of molecular surveillance in tracking AmpC-producing strains at general hospitals and emphasizes the need for epidemiological monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Girlich D, Naas T, Bellais S, Poirel L, Karim A, Nordmann P (2000) Heterogeneity of AmpC cephalosporinases of Hafnia alvei clinical isolates expressing inducible or constitutive ceftazidime resistance phenotypes. Antimicrob Agents Chemother 44:3220–3223

    Article  PubMed  CAS  Google Scholar 

  2. Perez–Perez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162

    Article  PubMed  Google Scholar 

  3. Thomson KS, Smith Moland E (2000) Version 2000: the new beta lactamases of Gram-negative bacteria at the dawn of the new millennium. Microbes Infect 2:1225–1235

    Article  PubMed  CAS  Google Scholar 

  4. Bush K (2001) New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 32:1085–1089

    Article  PubMed  CAS  Google Scholar 

  5. Bauernfeind A, Chong Y, Lee K (1998) Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Bonsai Med J 39:520–525

    CAS  Google Scholar 

  6. Gazouli M, Tzouvelekis LS, Prinarakis E, Miriagou V, Tzelepi E (1996) Transferable cefoxitin resistance in Enterobacteria from Greek hospitals and characterization of a plasmid-mediated group 1 beta-lactamase (LAT-2). Antimicrob Agents Chemother 40:1736–1740

    PubMed  CAS  Google Scholar 

  7. Alvarez M, Tran JH, Chow N, Jacoby GA (2004) Epidemiology of conjugative plasmid-mediated AmpC beta-lactamases in the United States. Antimicrob Agents Chemother 48(2):533–537

    Article  PubMed  CAS  Google Scholar 

  8. Philippon A, Arlet G, Jacoby GA (2002) Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 46(1):1–11

    Article  PubMed  CAS  Google Scholar 

  9. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233

    Article  PubMed  CAS  Google Scholar 

  10. Coundron PE, Hanson ND, Climo MW (2003) Occurrence of extended-spectrum and AmpC β-lactamases in blood stream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC β-lactamsases. J Clin Microbiol 41:772–777

    Article  Google Scholar 

  11. Moland ES, Black JA, Ourada J, Reisbig MD, Hanson ND, Thomson KS (2002) Occurrence of newer β-lactamases in Klebsiella pneumoniae isolated from 24 US hospitals. Antimicrob Agents Chemother 46:3837–3842

    Article  PubMed  CAS  Google Scholar 

  12. Thomson KS (2001) Controversies about extended-spectrum and AmpC beta-lactamases. Emerg Infect Dis 7:333–336

    Article  PubMed  CAS  Google Scholar 

  13. Collee JG, Miles RS, Watt B (1996) Tests for identification of bacteria. In: Collee JG, Marmion BP, Fraser AG, Simmons A (eds) Mackie and McCartney practical medical microbiology. Longman Singapore Publishers, Singapore, pp 131–150

    Google Scholar 

  14. Clinical and Laboratory Standards (2006) Performance standards for antimicrobial susceptibility testing: sixteenth informational supplement. Clinical and laboratory Standards Institute, Wayne, M110–S16

  15. Clinical and Laboratory Standards (2005) Performance standards for antimicrobial susceptibility testing. Fifteenth informational supplement. Clinical and Laboratory Standards Institute, Wayne, M100–S15

  16. Shahid M, Malik A, Agrawal M, Singhal S (2004) Phenotypic detection of the extended-spectrum and AmpC β-lactamases by a new spot inoculation method and modified three-dimensional extract test: comparison with conventional three-dimensional extract test. J Antimicrob Chemother 54:684–687

    Article  PubMed  CAS  Google Scholar 

  17. Davis LG, Dibner MD, Battey JF (1986) Large scale alkaline lysis method of plasmid purification. In: Davis LG, Dibner MD, Battery JF (eds) Basic methods in molecular biology, Sect. 8-3. Elsevier, New York, p 99

    Google Scholar 

  18. Shahid M, Malik A, Sheeba (2003) Multidrug-resistant Pseudomonas aeruginosa strains harboring R plasmids and AmpC β-lactamases isolated from hospitalized burn patients in a tertiary care hospital of North India. FEMS Microbiol Lett 228:181–186

    Article  PubMed  CAS  Google Scholar 

  19. Jacoby GA (2009) AmpC β-lactamases. Clin Microbiol Rev 22:161–182

    Article  PubMed  CAS  Google Scholar 

  20. Singhal S, Mathur T, Khan S, Upadhyay DJ, Chugh S, Gaind R, Rattan A (2005) Evaluation of methods for AmpC β-lactamase in gram-negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol 23:120–124

    Article  PubMed  CAS  Google Scholar 

  21. Gupta V (2007) An update on newer β-lactamases. Indian J Med Res 126:417–427

    PubMed  CAS  Google Scholar 

  22. Manchanda V, Singh NP (2003) Occurrence and detection of AmpC β lactamases among gram negative clinical isolates using a modified three dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. J Antimicrob Chemother 51:415–418

    Article  PubMed  CAS  Google Scholar 

  23. Subha A, Devi VR, Ananthan (2003) AmpC β lactamase producing multidrug resistant strains of Klebsiella spp and E. coli isolated from children under five in Chennai. Indian J Med Res 117:13–18

    PubMed  CAS  Google Scholar 

  24. Ananthan S, Subha A (2005) Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and E. coli. Indian J Med Microbiol 23(1):20–23

    Article  PubMed  CAS  Google Scholar 

  25. Ratna AK, Menon I, Kapur I, Kulkarni R (2003) Occurrence and detection of AmpC β lactamases at a referral hospital in Karnataka. Indian J Med Res 118:29–32

    PubMed  CAS  Google Scholar 

  26. Hernandez A, Benedl VJ, Martinez LM, Pascual A, Aguilar A, Tomas M, Alberti S (1999) Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother 43:937–939

    Google Scholar 

  27. Kang CI, Pai H, Kim SH, Kim HB, Kim EC, Oh MD, Choe KW (2004) Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J Antimicrob Chemother 54:1130–1133

    Article  PubMed  CAS  Google Scholar 

  28. Queenan AM, Foleno B, Gownley C, Wira E, Bush K (2004) Effects of inoculum and beta-lactamase activity in AmpC and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J Clin Microbiol 42:269–275

    Article  PubMed  CAS  Google Scholar 

  29. Song W, Moland ES, Hanson ND, Lewis JS, Jorgensen JH, Thomson KS (2005) Failure of cefepime therapy in treatment of Klebsiella pneumoniae bacteremia. J Clin Microbiol 43:4891–4894

    Article  PubMed  Google Scholar 

  30. Goossens H, Grabein B (2005) Prevalence and antimicrobial susceptibility data for extended spectrum beta lactamase and AmpC producing Enterobacteriaceae from the MYSTIC program in Europe and the US (1997–2004). Diagn Microbiol Infect Dis 53(4):257–264

    Article  PubMed  CAS  Google Scholar 

  31. Thomson KS, Sanders CC (1992) Detection of extended spectrum β-lactamases in members of family Enterobacteriaceae: comparison of the double disk and three dimensional tests. Antimicrob Agents Chemother 36:1877–1882

    Article  PubMed  CAS  Google Scholar 

  32. Pena C, Pujol M, Ardanuy C (1998) Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended spectrum β-lactamases. Antimicrob Agents Chemother 42:53–58

    PubMed  CAS  Google Scholar 

  33. Winokur PL, Canton R, Casellas JM, Legakis N (2001) Variations in the prevalence of strains expressing an extended spectrum β-lactamase phenotype and characterisation of isolates from Europe, the Americans and the Western Pacific region. Clin Infect Dis 32:594–603

    Article  Google Scholar 

  34. Abigail S, Mathai E, Jesudason MV, John TJ (1995) Ceftazidime resistance among Klebsiella pneumoniae in South India. Indian J Med Res 102:53–55

    PubMed  CAS  Google Scholar 

  35. Subha A, Ananthan S (2002) Extended spectrum β-lactamase mediated resistance to third generation cephalosporins among Klebsiella pneumoniae in Chennai. Indian J Med Microbiol 20:92–95

    PubMed  CAS  Google Scholar 

  36. Tan TY, Ng SY, Teo L, Koh Y, Teok CH (2008) Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. J Clin Pathol 61:642–644

    Article  PubMed  CAS  Google Scholar 

  37. Peterson LR (2005) Squeezing the antibiotic balloon: the impact of antimicrobial classes on emerging resistance. Clin Microbiol Infect 11(Suppl 5):4–16

    Article  PubMed  CAS  Google Scholar 

  38. Paterson DL (2004) “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis 38(Suppl 4):S341–S345

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sasirekha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasirekha, B., Shivakumar, S. Occurrence of Plasmid-Mediated AmpC β-Lactamases Among Escherichia coli and Klebsiella pneumoniae Clinical Isolates in a Tertiary Care Hospital in Bangalore. Indian J Microbiol 52, 174–179 (2012). https://doi.org/10.1007/s12088-011-0214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0214-2

Keywords

Navigation