Skip to main content
Log in

Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Fluid flow stress (FSS) is a major mechanical stress that induces bone remodeling upon orthodontic tooth movement, whereas CCN family protein 2 (CCN2) is a potent regenerator of bone defects. In this study, we initially evaluated the effect of laminar FSS on Ccn2 expression and investigated its mechanism in osteoblastic MC3T3-E1 cells. The Ccn2 expression was drastically induced by uniform FSS in an intensity dependent manner. Of note, the observed effect was inhibited by a Rho kinase inhibitor Y27632. Moreover, the inhibition of actin polymerization blocked the FSS-induced activation of Ccn2, whereas inducing F-actin formation using cytochalasin D and jasplakinolide enhanced Ccn2 expression in the same cells. Finally, F-actin formation was found to induce osteoblastic differentiation. In addition, activation of cyclic AMP-dependent kinase, which inhibits Rho signaling, abolished the effect of FSS. Collectively, these findings indicate the critical role of actin polymerization and Rho signaling in CCN2 induction and bone remodeling provoked by FSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J 13:S101–S112

    PubMed  CAS  Google Scholar 

  • Cassimeris L, McNeill H, Zigmond SH (1990) Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities. J Cell Biol 110:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Cicha I, Goppelt-Struebe M, Muehlich S, Yilmaz A, Raaz D, Daniel WG, Garlichs CD (2008) Pharmacological inhibition of RhoA signaling prevents connective tissue growth factor induction in endothelial cells exposed to non-uniform shear stress. Atherosclerosis 196:136–145

    Article  PubMed  CAS  Google Scholar 

  • Coue M, Brenner SL, Spector I, Korn ED (1987) Inhibition of actin polymerization by latrunculin A. FEBS Lett 213:316–318

    Article  PubMed  CAS  Google Scholar 

  • Crean JK, Furlong F, Mitchell D, McArdle E, Godson C, Martin F (2006) Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B-mediated phosphorylation and cytoplasmic translocation of p27(Kip-1). FASEB J 20:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Fu Q, Wu C, Shen Y, Zheng S, Chen R (2008) Effect of LIMK2 RNAi on reorganization of the actin cytoskeleton in osteoblasts induced by fluid shear stress. J Biomech 41:3225–3228

    Article  PubMed  Google Scholar 

  • Hahn A, Heusinger-Ribeiro J, Lanz T, Zenkel S, Goppelt-Struebe M (2000) Induction of connective tissue growth factor by activation of heptahelical receptors. Modulation by Rho proteins and the actin cytoskeleton. J Biol Chem 275:37429–37435

    Article  PubMed  CAS  Google Scholar 

  • Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MA, Lau LF, Chaqour B (2009) Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 284:23125–23136

    Article  PubMed  CAS  Google Scholar 

  • Heusinger-Ribeiro J, Eberlein M, Wahab NA, Goppelt-Struebe M (2001) Expression of connective tissue growth factor in human renal fibroblasts: regulatory roles of RhoA and cAMP. J Am Soc Nephrol 12:1853–1861

    PubMed  CAS  Google Scholar 

  • Jackson WM, Jaasma MJ, Tang RY, Keaveny TM (2008) Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am J Physiol Cell Physiol 295:C1007–C1015

    Article  PubMed  CAS  Google Scholar 

  • Kubota S, Takigawa M (2007) Role of CCN2/CTGF/Hcs24 in bone growth. Int Rev Cytol 257:1–41

    Article  PubMed  CAS  Google Scholar 

  • Kubota S, Takigawa M (2011) The role of CCN2 in cartilage and bone development. J Cell Commun Signal 5:209–217

    Article  PubMed  Google Scholar 

  • Li J, Zhao Z, Wang J, Chen G, Yang J, Luo S (2008) The role of extracellular matrix, integrins, and cytoskeleton in mechanotransduction of centrifugal loading. Mol Cell Biochem 309:41–48

    Article  PubMed  CAS  Google Scholar 

  • Moussad EE, Brigstock DR (2000) Connective tissue growth factor: what’s in a name? Mol Genet Metab 71:276–292

    Article  PubMed  CAS  Google Scholar 

  • Myers KA, Rattner JB, Shrive NG, Hart DA (2007) Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem Biophys Res Commun 364:214–219

    Article  PubMed  CAS  Google Scholar 

  • Nishida T, Nakanishi T, Asano M, Shimo T, Takigawa M (2000) Effects of CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro. J Cell Physiol 184:197–206

    Article  PubMed  CAS  Google Scholar 

  • Ott C, Iwanciw D, Graness A, Giehl K, Goppelt-Struebe M (2003) Modulation of the expression of connective tissue growth factor by alterations of the cytoskeleton. J Biol Chem 278:44305–44311

    Article  PubMed  CAS  Google Scholar 

  • Perbal B, Takigawa M (2005) CCN protein -A new family of cell growth and differentiation regulators. Imperial College Press, London, pp 1–311

    Book  Google Scholar 

  • Safadi FF, Xu J, Smock SL, Kanaan RA, Selim AH, Odgren PR, Marks SC Jr, Owen TA, Popoff SN (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 196:51–62

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Balam TA, Kuroda S, Tamamura N, Fukunaga T, Takigawa M, Takano-Yamamoto T (2009) CTGF and apoptosis in mouse osteocytes induced by tooth movement. J Dent Res 88:345–350

    Article  PubMed  CAS  Google Scholar 

  • Sin WC, Tse M, Planque N, Perbal B, Lampe PD, Naus CC (2009) Matricellular protein CCN3 (NOV) regulates actin cytoskeleton reorganization. J Biol Chem 284:29935–29944

    Article  PubMed  CAS  Google Scholar 

  • Smerdel-Ramoya A, Zanotti S, Deregowski V, Canalis E (2008) Connective tissue growth factor enhances osteoblastogenesis in vitro. J Biol Chem 283:22690–22699

    Article  PubMed  CAS  Google Scholar 

  • Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  PubMed  CAS  Google Scholar 

  • Thi MM, Iacobas DA, Iacobas S, Spray DC (2007) Fluid shear stress upregulates vascular endothelial growth factor gene expression in osteoblasts. Ann N Y Acad Sci 1117:73–81

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360

    Article  PubMed  CAS  Google Scholar 

  • Wong GL (1979) Induction of metabolic changes and down regulation of bovine parathyroid hormone-responsive adenylate cyclase are dissociable in isolated osteoclastic and osteoblastic bone cells. J Biol Chem 254:34–37

    PubMed  CAS  Google Scholar 

  • Woods A, Pala D, Kennedy L, McLean S, Rockel JS, Wang G, Leask A, Beier F (2009) Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes. Osteoarthr Cartil 17:406–413

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Millard M, Ren X, Cox OT, Erdreich-Epstein A (2010) c-Abl mediates endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 and by disruption of actin. Blood 115:2709–2718

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro T, Fukunaga T, Kobashi N, Kamioka H, Nakanishi T, Takigawa M, Takano-Yamamoto T (2001) Mechanical stimulation induces CTGF expression in rat osteocytes. J Dent Res 80:461–465

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. M. Miyamoto for providing technical assistance in designing and completing the real time PCR protocols. This study was supported in part by grants-in-aid (20249081T.T-Y) for scientific research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruko Takano-Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honjo, T., Kubota, S., Kamioka, H. et al. Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress. J. Cell Commun. Signal. 6, 225–232 (2012). https://doi.org/10.1007/s12079-012-0177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-012-0177-z

Keywords

Navigation