Skip to main content
Log in

Cotranslational protein folding reveals the selective use of synonymous codons along the coding sequence of a low expression gene

  • RESEARCH COMMENTARY
  • Published:
Journal of Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  • Anfinsen C. B. 1972 The formation and stabilization of protein structure. Biochem. J. 128, 737–749.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bulmer M. 1991 The selection-mutation-drift theory of synonymous codon usage. Genetics 129, 897–907.

    PubMed Central  CAS  PubMed  Google Scholar 

  • dos Reis M., Wernisch L. and Savva R. 2003 Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res. 31, 6976–6985.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ermolaeva M. D. 2001 Synonymous codon usage in bacteria. Curr. Issues. Mol. Biol. 3, 91–97.

    CAS  PubMed  Google Scholar 

  • Ghaemmaghami S., Huh W. K., Bower K., Howson R. W., Belle A., Dephoure N., O’Shea E. K. and Weissman J. S. 2003 Global analysis of protein expression in yeast. Nature 425, 737– 741.

    Article  CAS  PubMed  Google Scholar 

  • Gouy M. and Gautier C. 1982 Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10, 7055– 7074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hershberg R. and Petrov D. A. 2008 Selection on codon bias. Annu. Rev. Genet. 42, 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka Y., Kawamata K., Haraguchi T. and Chikashige Y. 2009 Codon usage bias is correlated with gene expression levels in the fission yeast Schizosaccharomyces pombe. Genes Cells 14, 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Hu S., Wang M., Cai G. and He M. 2013 Genetic code guided protein synthesis and folding in E. coli. J. Biol. Chem. 288, 30855–30861.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishihama Y., Schmidt T., Rappsilber J., Mann M., Hartl F. U., Kerner M. J. and Frishman D. 2008 Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9, 102.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimchi-Sarfaty C., Oh J. M., Kim I. W., Sauna Z. E., Calcagno A. M., Ambudkar S. V. and Gottesman M. M. 2007 A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528.

    Article  CAS  PubMed  Google Scholar 

  • Komar A. A. 2009 A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 34, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Konigsberg W. and Godson G. N. 1983 Evidence for use of rare codons in the DnaG gene and other regulatory genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 80, 687– 691.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lobry J. R. and Sueoka N. 2002 Asymmetric directional mutation pressures in bacteria. Genome Biol. 3, RESEARCH0058.

    Article  PubMed Central  PubMed  Google Scholar 

  • Martincorena I., Seshasayee A. S. N. and Luscombe N. M. 2012 Evidence of non-random mutation rates suggests an evolutionary risk management strategy. Nature 485, 95–98.

    Article  CAS  PubMed  Google Scholar 

  • Muto A. and Osawa S. 1987 The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl. Acad. Sci. USA 84, 166–169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plotkin J. B. and Kudla G. 2011 Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palidwor G. A., Perkins T. J. and Xia X. 2010 A general model of codon bias due to GC mutational bias. PLoS One 5, e13431.

    Article  PubMed Central  PubMed  Google Scholar 

  • Paul S., Million Weaver S., Chattopadhyay S., Sokurenko E. and Merrikh H. 2013 Accelerated gene evolution through replication– transcription conflicts. Nature 495, 512–516.

    Article  CAS  PubMed  Google Scholar 

  • Powdel B. R., Borah M. and Ray S. K. 2010 Strand-specific mutational bias influences codon usage of weakly expressed genes in Escherichia coli. Genes Cells 15, 773–782.

    Article  CAS  PubMed  Google Scholar 

  • Ran W. and Higgs P. G. 2010 The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria. Mol. Biol. Evol. 27, 2129–2140.

    Article  CAS  PubMed  Google Scholar 

  • Satapathy S. S., Dutta M., Buragohain A. K. and Ray S. K. 2012 Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine and tyrosine in the high expression genes in bacteria. J. Mol. Evol. 75, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Satapathy S. S., Powdel B. R., Dutta M., Buragohain A. K. and Ray S. K. 2014 Selection on GGU and CGU codons in the high expression genes in bacteria. J. Mol. Evol. 78, 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Saunders R. and Deane C. M. 2010 Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res. 38, 6719–6728.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharp P. M. and Li W. H. 1986 Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res. 14, 7737–7749.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharp P. M. and Li W. H. 1987 The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol. Biol. Evol. 4, 222–230.

    CAS  PubMed  Google Scholar 

  • Sharp P. M., Bailes E., Grocock R. J., Peden J. F. and Sockett R. E. 2005 Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 33, 1141–1153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou M., Guo J., Cha J., Chae M., Chen S. and Barral J. M 2013 Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the anonymous reviewers whose critical comments on the manuscript helped to compose the manuscript in a more focussed way and also significantly changed the discussion and conclusion. Authors also thank Dr Rocktotpal Konwarh, Tezpur University and Dr A. Bachawat, IISER, Mohali, for their comments on the manuscript. VJB thankfully acknowledges the receipt of his Research Associateship from the Department of Biotechnology (DBT), Govt. of India funded Bioinformatics Infrastructure Facility (BIF), Tezpur University. SKR and SSS are thankful to DBT, Govt. of India for the twinning project grant on codon usage bias under the research area Bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUVENDRA KUMAR RAY.

Additional information

[Ray S. K., Baruah V. J., Satapathy S. S. and Banerjee R. 2014 Cotranslational protein folding reveals the selective use of synonymous codons along the coding sequence of a low expression gene. J. Genet. 93, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAY, S.K., BARUAH, V.J., SATAPATHY, S.S. et al. Cotranslational protein folding reveals the selective use of synonymous codons along the coding sequence of a low expression gene. J Genet 93, 613–617 (2014). https://doi.org/10.1007/s12041-014-0429-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0429-1

Keywords

Navigation