Skip to main content
Log in

Quinacrine causes apoptosis in human cancer cell lines through caspase-mediated pathway and regulation of small-GTPase

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Quinacrine (QC), an FDA-approved anti-malarial drug, has shown to have anticancer activities. Due to its ‘shotgun’ nature, QC has become an inevitable candidate for combination chemotherapy. There is lack of study of the molecular interplay between colorectal cancer (CRC) microenvironment and its metastasis. In this study, we focused on the differential anti-cancerous effect of QC on two different human cancer cell lines, HCT 116 and INT 407. Results suggest that cytotoxicity increased in both the cell lines with an increase in QC concentration. The expression patterns of small-GTPases and caspases were altered significantly in QC-treated cells compared to non-treated cells. HSP70 and p53 showed comparable differences in the expression pattern. The wound-healing assay showed an increase in the denuded zone, with an increase in the concentration of QC. The formation of apoptotic nuclei increased with a rise in the concentration of QC in both the cell lines. The decrease and increase in caspase 9 and caspase 3 expression respectively were studied, confirming apoptosis by the extrinsic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure  2
Figure  3
Figure  4
Figure  5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Ashkenazi A 2008 Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discov. 7 1001

    Article  CAS  Google Scholar 

  • Baskić D, Popović S, Ristić P and Arsenijević NN 2006 Analysis of cycloheximide‐induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int. 30 924–932

    Article  Google Scholar 

  • Celisa Santimano M, Martin A, Kowshik M and Sarkar A 2013 Zinc oxide nanoparticles cause morphological changes in human A549 cell line through alteration in the expression pattern of small GTPases at mRNA level. J. Bionanosci. 7 300–306

    Article  Google Scholar 

  • Cheng YT, Lin JA, Jhang JJ and Yen GC 2019 Protocatechuic acid-mediated DJ-1/PARK7 activation followed by PI3K/mTOR signaling pathway activation as a novel mechanism for protection against ketoprofen-induced oxidative damage in the gastrointestinal mucosa. Free Radic. Biol. 130 35–47

    Article  CAS  Google Scholar 

  • Chowdhury I, Tharakan B and Bhat GK 2006 Caspases—an update. Comp. Biochem. Phys. B Biochem. Mol Bio151 10–27

    Article  Google Scholar 

  • de Lira Mota KS, Dias GEN, Pinto MEF, Luiz Ferreira Â, Monteiro Souza-Brito AR, Hiruma-Lima CA, Barbosa-Filho JM and Batista LM 2009 Flavonoids with gastroprotective activity. Molecules 14 979–1012

    Article  Google Scholar 

  • Ehsanian R, Van Waes C and Feller SM 2011 Beyond DNA binding-a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun. Signal. 9 13

    Article  CAS  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ and Hancock DC 1992 Induction of apoptosis in fibroblasts by c-myc protein. Cell 69 119–128

    Article  CAS  Google Scholar 

  • Fasanmade AA, Owuor ED, Ee RP, Qato D, Heller M and Kong ANT 2001 Quinacrine induces cytochrome c-dependent apoptotic signaling in human cervical carcinoma cells. Arch. Pharm. Res. 24 126–135

    Article  CAS  Google Scholar 

  • Friedl P and Wolf K 2003 Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3 362

    Article  CAS  Google Scholar 

  • Fritz G, Just I and Kaina B 1999 Rho GTPases are over‐expressed in human tumors. Int. J. Cancer. 81 682–687

    Article  CAS  Google Scholar 

  • Goodell JR, Ougolkov AV, Hiasa H, Kaur H, Remmel R, Billadeau DD and Ferguson DM 2008 Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. J. Med. Chem. 51 179–182

    Article  CAS  Google Scholar 

  • Grady WM and Carethers JM 2008 Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135 1079–1099

    Article  CAS  Google Scholar 

  • Gupta SK, Croffie JM, Pfefferkorn MD and Fitzgerald JF 2003 Diagnostic yield of duodenal aspirate for G. lamblia and comparison to duodenal mucosal biopsies. Dig. Dis. Sci. 48 605–607

    Article  Google Scholar 

  • Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND and Bosykh D 2005 Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. USA 102 17448–17453

    Article  CAS  Google Scholar 

  • Gurova K 2009 New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Futur. Oncol. 5 1685–1704

    Article  CAS  Google Scholar 

  • Hall A 2009 The cytoskeleton and cancer. Cancer Metastasis Rev. 28 5–14

    Article  Google Scholar 

  • Harikumar KB, Kuttan G and Kuttan R 2009 Phyllanthus amarus inhibits cell growth and induces apoptosis in Dalton’s lymphoma ascites cells through activation of caspase-3 and downregulation of Bcl-2. Integr. Cancer Ther. 8 190–194

    Article  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D 2011 Global cancer statistics. CA Cancer J. Clin. 61 69–90

    Article  Google Scholar 

  • Jeong HS, Choi Y, Lee ER, Kim JH, Jeon K, Lee HJ and Cho SG. 2011. Involvement of caspase-9 in autophagy-mediated cell survival pathway. Biochim. Biophys. Acta Mol. Cell Res. 1813 80–90

    Article  CAS  Google Scholar 

  • Jin Z and El-Deiry WS 2005 Overview of cell death signaling pathways. Cancer. Biol. Ther. 4 147–171

    Article  Google Scholar 

  • Kominami K, Nakabayashi J, Nagai T, Tsujimura Y, Chiba K, Kimura H, Miyawaki A, Sawasaki T, Yokota H, Manabe N and Sakamaki K 2012 The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model. Biochim. Biophys. Acta Mol. Cell Res. 1823 1825–1840

    Article  CAS  Google Scholar 

  • Lalitha P, Veena V, Vidhyapriya P, Lakshmi P, Krishna R and Sakthivel N 2016 Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30. Apoptosis 21 566–577

    Article  CAS  Google Scholar 

  • Lozano E, Betson M and Braga VM 2003 Tumor progression: small GTPases and loss of cell–cell adhesion. Bioessays 25 452–463

    Article  CAS  Google Scholar 

  • Maity P, Biswas K, Roy S, Banerjee RK and Bandyopadhyay U 2003 Smoking and the pathogenesis of gastroduodenal ulcer–recent mechanistic update. Mol. Cell. Biochem. 253 329–338

    Article  CAS  Google Scholar 

  • Moghaddam DD, Ghadirian E and Azami M 2005 Blastocystis hominis and the evaluation of efficacy of metronidazole and trimethoprim/sulfamethoxazole. Parasitol. Res96 273–275

    Article  Google Scholar 

  • Ortega YR and Adam RD 1997 Giardia: overview and update. Clin. Infect. Dis. 25 545–549

    Article  CAS  Google Scholar 

  • Pancione M, Remo A and Colantuoni V 2012 Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Patholog. Res. Int. 2012 11

    Google Scholar 

  • Paul-Samojedny M, Kokocińska D, Samojedny A, Mazurek U, Partyka R, Lorenz Z and Wilczok T 2005 Expression of cell survival/death genes: Bcl-2 and Bax at the rate of colon cancer prognosis Biochim. Biophys. Acta Mol. Basis Dis. 1741 25–29

    Article  CAS  Google Scholar 

  • Pertz O, Hodgson L, Klemke RL and Hahn KM 2006 Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440 1069

    Article  CAS  Google Scholar 

  • Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD and Kundu CN 2012 Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int. J. Cancer 130 1660–1670

    Article  CAS  Google Scholar 

  • Sander EE, van Delft S, Jean P, Reid T, van der Kammen RA, Michiels F and Collard JG 1998 Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell–cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143 1385–1398

  • Sarkar A, Parikh N, Hearn SA, Fuller MT, Tazuke SI and Schulz C 2007 Antagonistic roles of Rac and Rho in organizing the germ cell microenvironment. Curr. Biol. 17 1253–1258

    Article  CAS  Google Scholar 

  • Tahir AA, Sani NFA, Murad NA, Makpol S, Ngah WZW and Yusof YAM 2015 Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. Nutr. J. 14 31

    Article  Google Scholar 

  • Torres RE M, Banegas EI, Mendoza M, Diaz C, Bucheli ST M, Fontecha GA, Alam MT, Goldman I, Udhayakumar V and Zambrano JON 2013 Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras. Am. J. Trop. Med. Hyg. 88 850–854

    Article  CAS  Google Scholar 

  • Upcroft P and Upcroft JA 2001 Drug targets and mechanisms of resistance in the anaerobic protozoa Clin. Micro. Revs14 150–164

    Article  CAS  Google Scholar 

  • Van Hengel J, D’Hooge P, Hooghe B, Wu X, Libbrecht L, De Vos R, Quondamatteo F, Klempt M, Brakebusch C and Van Roy F 2008 Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver. Gastroenterology 134 781–792

    Article  Google Scholar 

  • Wang G, Wang X, Yu H, Wei S, Williams N, Holmes DL, Halfmann R, Naidoo J, Wang L, Li L and Chen S 2013 Small-molecule activation of the TRAIL receptor DR5 in human cancer cells. Nat. Chem. Biol. 9 84

    Article  Google Scholar 

  • Wiezorek J, Holland P and Graves J 2010 Death receptor agonists as a targeted therapy for cancer. Clin. Cancer Res. 16 1701–1708

    Article  CAS  Google Scholar 

  • Xu YQ, Zhang JH and Yang XS 2016 Corosolic acid induces potent anti-cancer effects in CaSki cervical cancer cells through the induction of apoptosis, cell cycle arrest and PI3K/Akt signalling pathway. Bangladesh J. Pharmacol. 11 453–459

    Article  Google Scholar 

Download references

Acknowledgements

AS acknowledges the financial support for this work to DBT, India, as a pilot project grant [Grant No. 6242-P59/RGCB/PMD/DBT/ANSR/2015]. AS was supported by a fellowship from the same grant. The author acknowledges Prof. Utpal Roy for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshuman Sarkar.

Additional information

Communicated by Sorab Dalal.

Corresponding editor: Sorab Dalal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A., Ravindran, G. & Sarkar, A. Quinacrine causes apoptosis in human cancer cell lines through caspase-mediated pathway and regulation of small-GTPase. J Biosci 45, 43 (2020). https://doi.org/10.1007/s12038-020-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-0011-3

Keywords

Navigation