Skip to main content
Log in

Circular RNAs in Parkinson’s Disease: Reliable Biological Markers and Targets for Rehabilitation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In clinical practice, the underlying pathogenesis of Parkinson’s disease (PD) remains unknown. Circular RNAs (circRNAs) have good biological properties and can be used as biological marker. Rehabilitation as a third treatment alongside drug and surgery has been shown to be clinically effective, but biomarkers of rehabilitation efficiency at genetic level is still lacking. In this study, we identified differentially expressed circRNAs in peripheral blood exosomes between PD patients and health controls (HCs) and determined whether these circRNAs changed after rehabilitation, to explore the competing RNA networks and epigenetic mechanisms affected. We found that there were 558 upregulated and 609 downregulated circRNAs in PD patients compared to HCs, 3398 upregulated and 479 downregulated circRNAs in PD patients after rehabilitation compared to them before rehabilitation, along with 3721 upregulated and 635 downregulated circRNAs in PD patients after rehabilitation compared to HCs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially expressed circRNAs may affect the stability of the cellular actin backbone and synaptic structure by influencing the aggregation of α-synuclein (a-syn). We selected two circRNAs overexpressed in PD patients for validation (hsa_circ_0001535 and hsa_circ_0000437); the results revealed that their expression levels were all reduced to varying degrees (p < 0.05) after rehabilitation. After network analysis, we believe that hsa_circ_0001535 may be related to the aggregation of a-syn, while hsa_circ_0000437 may act on hsa-let-7b-5p or hsa-let-7c-5p through sponge effect to cause inflammatory response. Our findings suggest that rehabilitation can mitigate the pathological process of PD by epigenetic means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the online repository, https://ngdc.cncb.ac. cn/gsa-human/, HRA002383.

References

  1. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7(4):306–318. https://doi.org/10.1038/nrg1831

    Article  CAS  PubMed  Google Scholar 

  2. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  3. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5(1):75–86. https://doi.org/10.1016/s1474-4422(05)70285-4

    Article  PubMed  Google Scholar 

  4. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–1055. https://doi.org/10.1002/mds.23732

    Article  PubMed  Google Scholar 

  5. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/s1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  6. Liu H, Koros C, Strohäker T, Schulte C, Bozi M, Varvaresos S, Ibáñez de Opakua A, Simitsi AM et al (2021) A novel SNCA A30G mutation causes familial Parkinson’s disease. Mov Disord 36(7):1624–1633. https://doi.org/10.1002/mds.28534

    Article  CAS  PubMed  Google Scholar 

  7. Burré J, Sharma M, Südhof TC (2018) Cell biology and pathophysiology of α-synuclein. Cold Spring Harb Perspect Med 8(3). https://doi.org/10.1101/cshperspect.a024091

  8. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2009) Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol 41(10):2015–2024. https://doi.org/10.1016/j.biocel.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Esparcia P, Hernández-Ortega K, Koneti A, Gil L, Delgado-Morales R, Castaño E, Carmona M, Ferrer I (2015) Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson’s disease. Acta Neuropathol Commun 3:76. https://doi.org/10.1186/s40478-015-0257-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12. https://doi.org/10.4161/epi.27473

    Article  CAS  PubMed  Google Scholar 

  11. Migliore L, Coppedè F (2022) Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 18(11):643–660. https://doi.org/10.1038/s41582-022-00714-w

    Article  CAS  PubMed  Google Scholar 

  12. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  13. Kelly S, Greenman C, Cook PR, Papantonis A (2015) Exon skipping is correlated with exon circularization. J Mol Biol 427(15):2414–2417. https://doi.org/10.1016/j.jmb.2015.02.018

    Article  CAS  PubMed  Google Scholar 

  14. Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29(20):2168–2182. https://doi.org/10.1101/gad.270421.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  16. Ravanidis S, Bougea A, Karampatsi D, Papagiannakis N, Maniati M, Stefanis L, Doxakis E (2021) Differentially expressed circular RNAs in Peripheral blood mononuclear cells of patients with Parkinson’s disease. Mov Disord 36(5):1170–1179. https://doi.org/10.1002/mds.28467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen-Fultheim R, Karmon M, Madrer N, Rohrlich TM et al (2020) A Parkinson’s disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med 12(9):e11942. https://doi.org/10.15252/emmm.201911942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller DB, O’Callaghan JP (2015) Biomarkers of Parkinson’s disease: present and future. Metabolism 64(3 Suppl 1):S40-46. https://doi.org/10.1016/j.metabol.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  19. Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW et al (2013) Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. NeuroReport 24(10):509–514. https://doi.org/10.1097/WNR.0b013e328361dc13

    Article  CAS  PubMed  Google Scholar 

  20. Keus SH, Bloem BR, Hendriks EJ, Bredero-Cohen AB, Munneke M, Practice Recommendations Development G (2007) Evidence-based analysis of physical therapy in Parkinson’s disease with recommendations for practice and research. Mov Disord 22(4):451–460; quiz 600. https://doi.org/10.1002/mds.21244

  21. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  22. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, Giladi N, Holloway RG et al (2004) Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 19(9):1020–1028. https://doi.org/10.1002/mds.20213

    Article  PubMed  Google Scholar 

  23. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198. https://doi.org/10.1016/0022-3956(75)90026-6

  24. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  25. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  26. Mathias S, Nayak US, Isaacs B (1986) Balance in elderly patients: the “get-up and go” test. Arch Phys Med Rehabil 67(6):387–389

    CAS  PubMed  Google Scholar 

  27. Combs SA, Diehl MD, Filip J, Long E (2014) Short-distance walking speed tests in people with Parkinson disease: reliability, responsiveness, and validity. Gait Posture 39(2):784–788. https://doi.org/10.1016/j.gaitpost.2013.10.019

    Article  PubMed  Google Scholar 

  28. Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW, Berman LB (1985) The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. Can Med Assoc J 132(8):919–923

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Duncan RP, Leddy AL, Earhart GM (2011) Five times sit-to-stand test performance in Parkinson’s disease. Arch Phys Med Rehabil 92(9):1431–1436. https://doi.org/10.1016/j.apmr.2011.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  30. Potter K, Brandfass K (2015) The Mini-Balance Evaluation Systems Test (Mini-BESTest). J Physiother 61(4):225. https://doi.org/10.1016/j.jphys.2015.04.002

    Article  PubMed  Google Scholar 

  31. Thompson E (2015) Hamilton Rating Scale for Anxiety (HAM-A). Occup Med (Lond) 65(7):601. https://doi.org/10.1093/occmed/kqv054

    Article  PubMed  Google Scholar 

  32. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23(1):56–62. https://doi.org/10.1136/jnnp.23.1.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Liu Y, Jin Z, Liu C, Yu X, Chen K, Meng D, Liu A et al (2022) Association between mitochondrial function and rehabilitation of Parkinson’s disease: revealed by exosomal mRNA and lncRNA expression profiles. Front Aging Neurosci 14:909622. https://doi.org/10.3389/fnagi.2022.909622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen KK, Jin ZH, Gao L, Qi L, Zhen QX, Liu C, Wang P, Liu YH et al (2021) Efficacy of short-term multidisciplinary intensive rehabilitation in patients with different Parkinson’s disease motor subtypes: a prospective pilot study with 3-month follow-up. Neural Regen Res 16(7):1336–1343. https://doi.org/10.4103/1673-5374.301029

    Article  PubMed  Google Scholar 

  35. Mandolesi G, Rizzo FR, Balletta S, Stampanoni Bassi M, Gilio L, Guadalupi L, Nencini M, Moscatelli A et al (2021) The microRNA let-7b-5p is negatively associated with inflammation and disease severity in multiple sclerosis. Cells 10(2). https://doi.org/10.3390/cells10020330

  36. Lv J, Zeng Y, Qian Y, Dong J, Zhang Z, Zhang J (2018) MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res 1685:91–104. https://doi.org/10.1016/j.brainres.2018.01.032

    Article  CAS  PubMed  Google Scholar 

  37. Verstraeten A, Theuns J, Van Broeckhoven C (2015) Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 31(3):140–149. https://doi.org/10.1016/j.tig.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  38. Gunnarsson LG, Bodin L (2019) Occupational exposures and neurodegenerative diseases-a systematic literature review and meta-analyses. Int J Environ Res Public Health 16(3). https://doi.org/10.3390/ijerph16030337

  39. Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U (2021) Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 70:101397. https://doi.org/10.1016/j.arr.2021.101397

    Article  CAS  PubMed  Google Scholar 

  40. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D, Coleman P, Lemere CA et al (2015) The epigenetics of aging and neurodegeneration. Prog Neurobiol 131:21–64. https://doi.org/10.1016/j.pneurobio.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Heesbeen HJ, Smidt MP (2019) Entanglement of genetics and epigenetics in Parkinson’s disease. Front Neurosci 13:277. https://doi.org/10.3389/fnins.2019.00277

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jiang C, Hopfner F, Katsikoudi A, Hein R, Catli C, Evetts S, Huang Y, Wang H et al (2020) Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry 91(7):720–729. https://doi.org/10.1136/jnnp-2019-322588

    Article  PubMed  Google Scholar 

  43. Pavlou MAS, Pinho R, Paiva I, Outeiro TF (2017) The yin and yang of α-synuclein-associated epigenetics in Parkinson’s disease. Brain 140(4):878–886. https://doi.org/10.1093/brain/aww227

    Article  PubMed  Google Scholar 

  44. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  PubMed  Google Scholar 

  45. Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111. https://doi.org/10.1016/j.celrep.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW et al (2017) Coordinated circRNA Biogenesis and function with NF90/NF110 in Viral Infection. Mol Cell 67(2):214-227.e217. https://doi.org/10.1016/j.molcel.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  47. Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565. https://doi.org/10.1038/onc.2017.361

    Article  CAS  PubMed  Google Scholar 

  48. Svitkina T (2018) The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol 10(1). https://doi.org/10.1101/cshperspect.a018267

  49. Carlier MF (1998) Control of actin dynamics. Curr Opin Cell Biol 10(1):45–51. https://doi.org/10.1016/s0955-0674(98)80085-9

    Article  CAS  PubMed  Google Scholar 

  50. Eira J, Silva CS, Sousa MM, Liz MA (2016) The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 141:61–82. https://doi.org/10.1016/j.pneurobio.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  51. Carnwath T, Mohammed R, Tsiang D (2018) The direct and indirect effects of α-synuclein on microtubule stability in the pathogenesis of Parkinson’s disease. Neuropsychiatr Dis Treat 14:1685–1695. https://doi.org/10.2147/ndt.S166322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oliveira da Silva MI, Liz MA (2020) Linking alpha-synuclein to the actin cytoskeleton: consequences to neuronal function. Front Cell Dev Biol 8:787. https://doi.org/10.3389/fcell.2020.00787

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C, Valtorta F, Chieregatti E (2014) GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ 21(12):1971–1983. https://doi.org/10.1038/cdd.2014.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607. https://doi.org/10.1016/j.neuron.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  55. Islam MS, Moore DJ (2017) Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation. Biochem Soc Trans 45(1):163–172. https://doi.org/10.1042/bst20160264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Biosa A, Trancikova A, Civiero L, Glauser L, Bubacco L, Greggio E, Moore DJ (2013) GTPase activity regulates kinase activity and cellular phenotypes of Parkinson’s disease-associated LRRK2. Hum Mol Genet 22(6):1140–1156. https://doi.org/10.1093/hmg/dds522

    Article  CAS  PubMed  Google Scholar 

  57. Liu X, Gao Y, Lin X, Li L, Han X, Liu J (2016) The coronin family and human disease. Curr Protein Pept Sci 17(6):603–611. https://doi.org/10.2174/1389203717666151201192011

    Article  CAS  PubMed  Google Scholar 

  58. Lai D, Alipanahi B, Fontanillas P, Schwantes-An TH, Aasly J, Alcalay RN, Beecham GW, Berg D et al (2021) Genomewide association studies of LRRK2 modifiers of Parkinson’s disease. Ann Neurol 90(1):76–88. https://doi.org/10.1002/ana.26094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xie Y, Hang X, Xu W, Gu J, Zhang Y, Wang J, Zhang X, Cao X et al (2021) CircFAM13B promotes the proliferation of hepatocellular carcinoma by sponging miR-212, upregulating E2F5 expression and activating the P53 pathway. Cancer Cell Int 21(1):410. https://doi.org/10.1186/s12935-021-02120-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luo Q, Sun W, Wang YF, Li J, Li DW (2022) Association of p53 with neurodegeneration in Parkinson’s disease. Parkinsons Dis 2022:6600944. https://doi.org/10.1155/2022/6600944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. García S, Amor-Gutiérrez O, Palomares-Albarrán M, Toyos-Rodríguez C, Cuetos F, Martínez C, Costa-García A, Fernández-Sánchez MT et al (2021) Unfolded p53 as a marker of oxidative stress in mild cognitive impairment, Alzheimer’s and Parkinson’s disease. Curr Alzheimer Res 18(9):695–700. https://doi.org/10.2174/1567205018666211117101216

    Article  CAS  PubMed  Google Scholar 

  62. Dai CQ, Luo TT, Luo SC, Wang JQ, Wang SM, Bai YH, Yang YL, Wang YY (2016) p53 and mitochondrial dysfunction: novel insight of neurodegenerative diseases. J Bioenerg Biomembr 48(4):337–347. https://doi.org/10.1007/s10863-016-9669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Duplan E, Giordano C, Checler F, Alves da Costa C (2016) Direct α-synuclein promoter transactivation by the tumor suppressor p53. Mol Neurodegener 11:13. https://doi.org/10.1186/s13024-016-0079-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu F, Sun G, Zheng W, Tang W, Cheng Y, Wu L, Li X, Tao J et al (2021) circCORO1C promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing the expression of PD-L1 through NF-kappaB pathway. J Clin Lab Anal 35(12):e24003. https://doi.org/10.1002/jcla.24003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L, Sun Y, Wu J et al (2021) Targeting microglial alpha-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front Immunol 12:719807. https://doi.org/10.3389/fimmu.2021.719807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gustot A, Gallea JI, Sarroukh R, Celej MS, Ruysschaert JM, Raussens V (2015) Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J 471(3):323–333. https://doi.org/10.1042/bj20150617

    Article  CAS  PubMed  Google Scholar 

  67. Chen G, Xie D, Zhang P, Zhou H (2022) Circular RNA hsa_circ_0000437 may be used as a new indicator for the diagnosis and prognosis of hepatocellular carcinoma. Bioengineered 13(6):14118–14124. https://doi.org/10.1080/21655979.2022.2081458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li F, Cai Y, Deng S, Yang L, Liu N, Chang X, Jing L, Zhou Y et al (2021) A peptide CORO1C-47aa encoded by the circular noncoding RNA circ-0000437 functions as a negative regulator in endometrium tumor angiogenesis. J Biol Chem 297(5):101182. https://doi.org/10.1016/j.jbc.2021.101182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10(12):842–849. https://doi.org/10.1038/nrn2763

    Article  CAS  PubMed  Google Scholar 

  70. Nematian SE, Mamillapalli R, Kadakia TS, Majidi Zolbin M, Moustafa S, Taylor HS (2018) Systemic inflammation induced by microRNAs: endometriosis-derived alterations in circulating microRNA 125b–5p and Let-7b-5p Regulate Macrophage Cytokine Production. J Clin Endocrinol Metab 103(1):64–74. https://doi.org/10.1210/jc.2017-01199

    Article  PubMed  Google Scholar 

  71. Wu Y, Zhang Y, Zheng X, Dai F, Lu Y, Dai L, Niu M, Guo H et al (2020) Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis. Mol Cancer 19(1):99. https://doi.org/10.1186/s12943-020-01215-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Redila VA, Christie BR (2006) Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137(4):1299–1307. https://doi.org/10.1016/j.neuroscience.2005.10.050

    Article  CAS  PubMed  Google Scholar 

  73. Johansson ME, Cameron IGM, Van der Kolk NM, de Vries NM, Klimars E, Toni I, Bloem BR, Helmich RC (2022) Aerobic exercise alters brain function and structure in Parkinson’s disease: a randomized controlled trial. Ann Neurol 91(2):203–216. https://doi.org/10.1002/ana.26291

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Pro.BF for her constant guidance through all the stages of the writing of this manuscript.

Funding

This work was supported by the Science and Technology Development Fund of Beijing Rehabilitation Hospital, Capital Medical University (2019–023 to YL, 2020–069, 2021–011 to BF, and 2020R-001 to YW).

Author information

Authors and Affiliations

Authors

Contributions

JX and BF contributed to the study conception and design. Material preparation and data collection were performed by YL, ZJ, CL, XY, KC, and DM. Statistical analysis was performed by YD and YW. The first draft of the manuscript was written by YD, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianing Xi or Boyan Fang.

Ethics declarations

Ethics approval

The studies involving human participants. Approval was granted by the Ethics Committee of Beijing Rehabilitation Hospital of Capital Medical University (2020bkky010).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 659 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Wang, Y., Liu, Y. et al. Circular RNAs in Parkinson’s Disease: Reliable Biological Markers and Targets for Rehabilitation. Mol Neurobiol 60, 3261–3276 (2023). https://doi.org/10.1007/s12035-023-03268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03268-0

Keywords

Navigation